1887

Abstract

Using a simian virus 40/adenovirus 12 (Adl2)-recom binant virus, the Ad 12 early region IB (E1B) 19K protein has been produced at high levels after infection of Cos 1 cells. Expression of the 19K polypeptide reaches a maximum at about 48 h post-infection, declining at later times as host cell death occurs. Using two-dimensional isoelectric focusing/SDS-polyacryl- amide gel electrophoresis, we have shown that the Ad 12 E1B protein is a major species following infection of Cos 1 cells with recombinant virus. Two forms of 19K polypeptide can be distinguished following isoelectric focusing. Using subcellular fractionation of infected cells, it was found that a similar distribution of 19K protein occurred after recombinant virus and Ad 12 infection, with the polypeptide being most abundant in nuclear and membranous fractions. Similarly, as in Adl2-infected cells, a certain proportion of the protein is located on the outside surface of the cell after recombinant viral infection. Immuno- histochemical studies suggest that, at early times postinfection, the E1B 19K protein is located in the nuclear membrane, the Golgi apparatus and the endoplasmic reticulum. At later times, it can be seen to have spread to the cytoplasm as well as to the other organelles. These results are discussed in relation to the known functions of the 19K E1B protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-8-1713
1990-08-01
2021-10-26
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/8/JV0710081713.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-8-1713&mimeType=html&fmt=ahah

References

  1. Berk A. J. 1986; Functions of adenovirus E1A. Cancer Surveys 5:367–387
    [Google Scholar]
  2. Berk A. J., Sharp P. A. 1978; Structure of the adenovirus 2 early mRNAs. Cell 14:695–711
    [Google Scholar]
  3. Branton P. E., Bayley S. T., Graham F. L. 1985; Transformation by human adenoviruses. Biochimica et biophysica acta 780:67–94
    [Google Scholar]
  4. Butel J. S., Jarvis D. L. 1986; The plasma-membrane-associated form of S V40 tumour antigen: biochemical and biological properties. Biochimica et biophysica acta 865:171–195
    [Google Scholar]
  5. Byrd P. J., Brown K. W., Gallimore P. H. 1982; Malignant transformation of human embryo retinoblasts by cloned adenovirus 12 DNA. Nature; London: 29869–71
    [Google Scholar]
  6. Byrd P. J., Grand R. J. A., Gallimore P. H. 1988; Differential transformation of primary human embryo retinal cells by adenovirus El regions and combinations of ElA + ras . Oncogene 2:477–484
    [Google Scholar]
  7. Chinnadurai G. 1983; Adenovirus 2 lp+locus codes for a 19 Kd tumour antigen that plays an essential role in cell transformation. Cell 33:759–766
    [Google Scholar]
  8. Chinnadurai G., Chinnadurai S., Brusca J. 1979; Physical mapping of a large plaque mutation of adenovirus type 2. Journal of Virology 32:623–628
    [Google Scholar]
  9. Chow L. T., Broker T. R., Lewis J. B. 1979; The complex splicing patterns of RNAs from the early regions of adenovirus 2. Journal of Molecular Biology 134:265–303
    [Google Scholar]
  10. Franke W. W., Scheer U., Krohne G., Jarasch E. D. 1981; The nuclear envelope and the architecture of the nuclear periphery. Journal of Cell Biology 91:39s–50s
    [Google Scholar]
  11. Gallimore P. H., Byrd P. J., Whittaker J. L., Grand R. J. A. 1985; Properties of rat cells transformed by DNA plasmids containing adenovirus type 12 El DNA or specific fragments of the E1 region: comparison of transforming frequencies. Cancer Research 45:2670–2680
    [Google Scholar]
  12. Grand R. J. A. 1987; The structure and function of the adenovirus early region 1 proteins. Biochemical Journal 241:25–39
    [Google Scholar]
  13. Grand R. J. A. 1989; Protein acylation in eukaryotes. Biochemical Journal 258:625–638
    [Google Scholar]
  14. Grand R. J. A., Gallimore P. H. 1984; Adenovirus type 12 early region 1 proteins: a study of their subcellular localization and protein-protein interactions. Journal of General Virology 65:2149–2166
    [Google Scholar]
  15. Grand R. J. A., Roberts C., Gallimore P. H. 1985; Acylation of adenovirus type 12 early region lb 18K protein: further evidence for its localisation in the cell membrane. FEBS Letters 181:229–235
    [Google Scholar]
  16. Hebst R. S., Hemo H. Jr Fisher P. B., Babiss L. E. 1988; Regulation of adenovirus and cellular gene expression and of cellular transformation by the ElB-encoded 175-amino acid protein. Journal of Virology 62:4634–4643
    [Google Scholar]
  17. Herrmann C. H., Mathews M. B. 1989; The adenovirus E1B 19- kilodalton protein stimulates gene expression by increasing DNA levels. Molecular and Cellular Biology 9:5412–5423
    [Google Scholar]
  18. Herrmann C. H., Dery C. V., Mathews M. B. 1987; Transactivation of host and viral genes by adenovirus E1B 19K tumor antigen. Oncogene 2:25–35
    [Google Scholar]
  19. Jochemsen H., Daniels G. S. G., Hertoghs J. J. L., Schrier P. I., Van Den Elsen P. J., Van Der Eb A. J. 1982; Identification of adenovirus type 12 gene products involved in transformation and oncogenesis. Virology 122:15–28
    [Google Scholar]
  20. Jochemsen A. G., Bernards R., Van Kranen H. J., Houweling A., Bos J. L., Van Der Eb A. J. 1986; Different activities of the adenovirus type 5 and 12 El A regions in transformation with the EJ Ha-rai oncogenes. Journal of Virology 59:684–691
    [Google Scholar]
  21. Johnson G. D., Davidson R. S., McNamee K. C., Russell G., Goodwin D., Holborow E. J. 1982; Fading of immunofluorescence during microscopy: a study of the phenomenon and its remedy. Journal of Immunological Methods 55:231–242
    [Google Scholar]
  22. Jones N. C., Rigby P. W. J., Ziff E. B. 1988; Transacting protein factors and the regulation of eukaryotic transcription: lessons from studies on DNA tumor viruses. Genes and Development 2:267–281
    [Google Scholar]
  23. Klockmann U., Deppert W. 1983; Acylated simian virus 40 large T-antigen: a new subclass associated with a detergent-resistant lamina of the plasma membrane. EMBO Journal 2:1151–1157
    [Google Scholar]
  24. Klockmann U., Deppert W. 1985; Evidence of transmembrane orientation of acylated simian virus 40 large T antigen. Journal of Virology 56:541–548
    [Google Scholar]
  25. Land H., Parada L. F., Weinberg R. A. 1983; Tumourigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature; London: 304596–602
    [Google Scholar]
  26. McGlade C. J., Tremblay M. L., Yee S.-P., Ross R., Branton P. E. 1987; Acylation of the 176R (19 kilodalton) early region IB protein of human adenovirus type 5. Journal of Virology 61:3227–3234
    [Google Scholar]
  27. McGlade C. J., Tremblay M. L., Branton P. E. 1989; Mapping of a phosphorylation site in the 176R (19KDa) early region IB protein of human adenovirus type 5. Virology 168:119–127
    [Google Scholar]
  28. Oda K., Fukui Y., Saito I., Masuda M., Shiroki K., Shimojo H. 1983; Hyperproduction of adenovirus type 12 E1B gene product in monkey cells, using a simian virus 40 vector. Journal of Virology 45:420–427
    [Google Scholar]
  29. O’Farrell P. Z., Goodman H. M., O’Farrell P. H. 1977; High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell 12:1133–1142
    [Google Scholar]
  30. Paraskeva C., Brown K. W., Gallimore P. H. 1982; Adenovirus-cell interactions early after infection: in vitrocharacteristics and tumourigenicity of adenovirus type 2-transformed rat liver epithelial cells. Journal of General Virology 58:73–81
    [Google Scholar]
  31. Parton A. 1989 Gene expression and regulation of common papillomavirus Ph. D. thesis University of Birmingham:
    [Google Scholar]
  32. Persson H., Katze M. G., Phillipson L. 1982; Purification of a native membrane-associated adenovirus tumour antigen. Journal of Virology 42:905–917
    [Google Scholar]
  33. Pilder S., Logan J., Shenk T. 1984; Deletion of the gene encoding the adenovirus 5 early region IB 21,000 molecular weight polypeptide leads to degradation of viral and host cell DNA. Journal of Virology 52:664–671
    [Google Scholar]
  34. Rowe D. T., Graham F. L., Branton P. E. 1983; Intracellular localisation of adenovirus type 5 tumor antigens in productively infected cells. Virology 129:456–468
    [Google Scholar]
  35. Ruley H. E. 1983; Adenovirus early region 1A enables viral and cellular transforming genes to transform cells in culture. Nature; London: 304602–606
    [Google Scholar]
  36. Schultz A. M., Henderson L. E., Oroszlan S. 1988; Fatty acylation of proteins. Annual Review of Cell Biology 4:611–647
    [Google Scholar]
  37. Settleman J., Dimaio D. 1988; Efficient transactivation and morphologic transformation by bovine papillomavirus genes expressed from a bovine papillomavirus/simian virus 40 recombinant virus. Proceedings of the National Academy of Sciences U.S.A.: 859007–9011
    [Google Scholar]
  38. Shiroki K., Shimojo H., Sawada Y., Uemizu Y., Fujinaga K. 1979; Incomplete transformation of rat cells by a small fragment of adenovirus 12 DNA. Virology 95:127–136
    [Google Scholar]
  39. Smith K. J., Gallimore P. H., Grand R. J. A. 1989; The expression of Ad 12 E1B 19K protein on the surface of adenovirus transformed and infected human cells. Oncogene 4:489–497
    [Google Scholar]
  40. Stillman B. 1986; Functions of the adenovirus E1B tumour antigens. Cancer Surveys 5:389–404
    [Google Scholar]
  41. Subramanian T., Kuppuswamy M., Gysberg J., Mak S., Chinnadurai G. 1984; 19-kDa Tumour antigen coded by early region E1B of adenovirus 2 is required for efficient synthesis and for protection of viral DNA. Journal of Biological Chemistry 259:11777–11783
    [Google Scholar]
  42. Takemori N., Riggs J. L., Aldrich C. D. 1969; Genetic studies with tumorigenic adenoviruses. II. Heterogeneity of cytmutants of adenovirus type 12. Virology 38:8–15
    [Google Scholar]
  43. Takemori N., Cladaras C., Bhat B., Conley A. J., Wold W. S. M. 1984; cytgene of adenovirus 2 and 5 is an oncogene for transforming function in early region E1B and encodes the E1B 19000 molecular weight polypeptide. Journal of Virology 52:793–805
    [Google Scholar]
  44. White E., Cipriani R. 1989; Specific disruption of intermediate filaments and the nuclear lamina by 19 kilodalton product of the adenovirus E1B oncogene. Proceedings of the National Academy of Sciences U.S.A.: 869886–9890
    [Google Scholar]
  45. White E., Cipriani R. 1990; Role of adenovirus E1B proteins in transformation: altered organisation of intermediate filaments in transformed cells that express the 19 Kilodalton protein. Molecular and Cellular Biology 10:120–130
    [Google Scholar]
  46. White E., Stillman B. 1987; Expression of adenovirus E1B mutant phenotypes is dependent on the host cell and on synthesis of E1A proteins. Journal of Virology 61:426–435
    [Google Scholar]
  47. White E., Blose S. H., Stillman B. W. 1984; Nuclear envelope localisation of an adenovirus tumor antigen maintains the integrity of cellular DNA. Molecular and Cellular Biology 4:2865–2875
    [Google Scholar]
  48. White E., Faha B., Stillman B. W. 1986; Regulation of adenovirus gene expression in human W138 cells by EIB-encoded tumor antigen. Molecular and Cellular Biology 6:3763–3773
    [Google Scholar]
  49. White E., Denton A., Stillman B. 1988; Role of the adenovirus E1B 19,000-dalton tumor antigen in regulating early gene expression. Journal of Virology 62:3445–3454
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-8-1713
Loading
/content/journal/jgv/10.1099/0022-1317-71-8-1713
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error