1887

Abstract

The nucleotide sequence of a 10465 bp dIII genomic fragment from fowlpox virux (FPV) is presented. Analysis of the nucleotide sequence revealed 10 potential major open reading frames (ORFs). Five of these ORFs are predicted to encode polypeptides with significant homology to hypothetical polypeptides derived from nucleotide sequence analysis of the vaccinia virus (VV) dIII D region. Interestingly, these homologous ORFs do not occur in the same tandem arrangement in the FPV genome as they do in the VV genome. These results are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-7-1517
1990-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/7/JV0710071517.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-7-1517&mimeType=html&fmt=ahah

References

  1. Binns M. M., Stenzler L., Tomley F. M., Campbell J., Boursnell M. E. G. 1987; Identification by a random sequencing strategy of the fowlpoxvirus DNA polymerase gene, its nucleotide sequence and comparison with other viral DNA polymerases. Nucleic Acids Research 15:6563–6573
    [Google Scholar]
  2. Binns M. M., Tomley F. M., Campbell J., Boursnell M. E. G. 1988; Comparison of a conserved region in fowlpox virus and vaccinia virus genomes and the translocation of the fowlpox virus thymidine kinase gene. Journal of General Virology 69:1275–1283
    [Google Scholar]
  3. Boursnell M. E. G., Foulds I. J., Campbell J. I., Binns M. M. 1988; Non-essential genes in the vaccinia virus HindIII K fragment: a gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. Journal of General Virology 69:2995–3003
    [Google Scholar]
  4. Boyle D. B., Coupar B. E. H. 1988; Construction of recombinant fowlpox viruses as vectors for poultry vaccines. Virus Research 10:343–356
    [Google Scholar]
  5. Boyle D. B., Coupar B. E. H., Gibbs A. J., Seigman L. J., Both G. W. 1987; Fowlpox virus thymidine kinase: nucleotide sequence and relationships to other thymidine kinases. Virology 156:355–365
    [Google Scholar]
  6. Condit R. C., Motyczka A. 1981; Isolation and preliminary characterization of temperature-sensitive mutants of vaccinia virus. Virology 113:224–241
    [Google Scholar]
  7. Condit R. C., Motyczka A., Spizz G. 1983; Isolation, characterization, and physical mapping of temperature-sensitive mutants of vaccinia virus. Virology 128:429–443
    [Google Scholar]
  8. Drillien R., Spehner D., Villeval D., Lecocq J.-P. 1987; Similar genetic organization between a region of fowlpox virus DNA and the vaccinia virus HindIII J fragment despite divergent location of the thymidine kinase gene. Virology 160:203–209
    [Google Scholar]
  9. Ensinger M. J., Rovinsky M. 1983; Marker rescue of temperature-sensitive mutations of vaccinia virus WR: correlation of genetic and physical maps. Journal of Virology 48:419–428
    [Google Scholar]
  10. Evans E., Traktman P. 1987; Molecular genetic analysis of a vaccinia virus gene with an essential role in DNA replication. Journal of Virology 61:3152–3162
    [Google Scholar]
  11. Hänggi M., Bannwarth W., Stunnenberg H. G. 1986; Conserved TAAAT motif in vaccinia virus late promoters: overlapping TATA box and site of transcription initiation. EMBO Journal 5:1071–1076
    [Google Scholar]
  12. Joklik W. K. 1962; The purification of four strains of poxvirus. Virology 18:9–18
    [Google Scholar]
  13. Kotwal G. J., Moss B. 1988; Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167:524–537
    [Google Scholar]
  14. Kotwal G. J., Moss B. 1989; Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. Journal of Virology 63:600–606
    [Google Scholar]
  15. Lee-Chen G.-J., Niles E. G. 1988a; Transcription and translation mapping of the 13 genes in the vaccinia virus HindIII D fragment. Virology 163:52–63
    [Google Scholar]
  16. Lee-Chen G.-J., Niles E. G. 1988b; Map positions of the 5′ ends of eight mRNAs synthesized from the late genes in the vaccinia virus Hind III D fragment. Virology 163:80–92
    [Google Scholar]
  17. Lee-Chen G.-J., Bourgeois N., Davidson K., Condit R. C., Niles E. G. 1988; Structure of the transcription initiation and termination sequences of seven early genes in the vaccinia virus HindIIID fragment. Virology 163:64–79
    [Google Scholar]
  18. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1440
    [Google Scholar]
  19. Mcgeoch D. J., Dalrymple M. A., Dolan A., Mcnab D., Perry L. J., Taylor P., Challberg M. D. 1988; Structure of herpes simplex virus type 1 genes required for replication of virus DNA. Journal of Virology 62:444–453
    [Google Scholar]
  20. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Müller H. K., Wittek R., Schaffner W., Schümperli D., Wyler R. 1978; Comparison of five poxvirus genomes by analysis with restriction endonucleases HindIII, BamI and Eco RI. Journal of General Virology 38:135–147
    [Google Scholar]
  22. Niles E. G., Seto J. 1988; Vaccinia virus gene D8 encodes a viriontransmembrane protein. Journal of Virology 62:3772–3778
    [Google Scholar]
  23. Niles E. G., Condit R. C., Caro P., Davidson K., Matusick L., Seto J. 1986; Nucleotide sequence and genetic map of the 16-kb vaccinia virus HindIII D fragment. Virology 153:96–112
    [Google Scholar]
  24. Rohrmann G., Yuen L., Moss B. 1986; Transcription of vaccinia virus early genes by enzymes isolated from vacciniavirions terminates downstream of a regulatory sequence. Cell 46:1029–1035
    [Google Scholar]
  25. Rosel J. L., Earl P. L., Weir J. P., Moss B. 1986; Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment. Journal of Virology 60:436–449
    [Google Scholar]
  26. Roseman D. A., Hruby D. E. 1987; Nucleotide sequence and transcript organization of a region of the vaccinia virus genome which encodes a constitutively expressed gene required for DNA replication. Journal of Virology 61:1398–1406
    [Google Scholar]
  27. Schmitt J. F. C., Stunnenberg H. G. 1988; Sequence and transcriptional analysis of the vaccinia virus HindIII I fragment. Journal of Virology 62:1889–1897
    [Google Scholar]
  28. Schwartz R. M., Dayhoff M. O. 1978; Matrices for detecting distant relationships. Atlas of Protein Sequence and Structure 3:353–358
    [Google Scholar]
  29. Tamin A., Villarreal E. C., Weinrich S. L., Hruby D. E. 1988; Nucleotide sequence and molecular genetic analysis of the vaccinia virus HindIII N/M region encoding the genes responsible for resistance to alpha-amanitin. Virology 165:141–150
    [Google Scholar]
  30. Tartaglia J., Pincus S., Paoletti E. 1990; Pox virus-based vectors as vaccine candidates. CRC Critical Reviews in Immunology 110:13–31
    [Google Scholar]
  31. Taylor J., Paoletti E. 1988; Fowlpox virus as a vector in nonavian species. Vaccine 6:466–467
    [Google Scholar]
  32. Taylor J., Weinberg R., Kawaoka Y., Webster R. G., Paoletti E. 1988a; Protective immunity against avian influenza induced by a fowlpox virus recombinant. Vaccine 6:504–508
    [Google Scholar]
  33. Taylor J., Weinberg R., Languet B., Desmettre P., Paoletti E. 1988b; Recombinant fowlpox virus inducing protective immunity in non-avian species. Vaccine 6:497–503
    [Google Scholar]
  34. Tomley F., Binns M., Campbell J., Boursnell M. 1988; Sequence analysis of an 11-2 kilobase, near-terminal, BamHI fragment of fowlpox virus. Journal of General Virology 69:1025–1040
    [Google Scholar]
  35. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO Journal 1:945–951
    [Google Scholar]
  36. Yuen L., Moss B. 1986; Multiple 3′ ends of mRNA encoding vaccinia virus growth factor occur within a series of repeated sequences downstream of T clusters. Journal of Virology 60:320–323
    [Google Scholar]
  37. Yuen L., Moss B. 1987; Oligonucleotide sequence signaling transcriptional termination of vaccinia virus early genes. Proceedings of the National Academy of Sciences, U.S.A 84:6417–6421
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-7-1517
Loading
/content/journal/jgv/10.1099/0022-1317-71-7-1517
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error