1887

Abstract

Epstein-Barr virus (EBV)-positive Burkitt’s lymphoma (BL) biopsy cells and early passage BL cell lines have been reported as showing an unusual type of virus-cell interaction; at least two EBV latent proteins appear not to be expressed. Serial passage of such lines is often accompanied by a broadening of virus latent gene expression and a corresponding change in the cell surface/growth phenotype towards that shown by transformed lymphoblastoid cell lines (LCLs). The sequence of events, both viral and cellular, involved in this transition needs to be defined properly. In the present work, phenotypically distinct cell clones have been derived from early passage cultures of a BL cell line in phenotypic transition, thereby giving access to relatively stable cell populations through which the different EBV-B cell interactions within the parental line can be studied. Clones retaining the original BL biopsy cell phenotype (CD10/CD77-positive, activation antigen/adhesion molecule-negative) expressed the virus-encoded nuclear antigen EBNA 1 but not any of the other known latent proteins, EBNAs 2, 3a, 3b, 3c, -LP and latent membrane protein (LMP). Other clones which had developed an LCL-like phenotype (CD10/CD77-negative, activation antigen/adhesion molecule-positive) now expressed all the above latent proteins and also contained significant numbers of cells in lytic cycle. Phenotypic change occurring within the parental BL cell line itself was initiated in a small subpopulation of cells in which the virus-encoded proteins EBNA 2 and LMP were transiently induced to an unusually high level of expression; this was accompanied by the first detectable changes in cell surface phenotype, namely the increase of cellular adhesion molecules. Some control over EBNA 2/LMP expression then appeared to be re-imposed since the presumed clonal descendents of these cells stably expressed EBNA 2 and LMP at much reduced levels typical of those seen in conventional LCLs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-7-1481
1990-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/7/JV0710071481.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-7-1481&mimeType=html&fmt=ahah

References

  1. Abbot S. D., Rowe M., Cadwallader K., Gordon J., Ricksten A., Rymo L., Wang F., Rickinson A. B. 1990; Epstein-Barr virus nuclear antigen 2 induces expression of the virus-coded latent membrane protein. Journal of Virology in press
    [Google Scholar]
  2. Allday M. J., Crawford D. H., Griffin B. E. 1989; Epstein-Barf virus latent gene expression during the initiation of B cell immortalization. Journal of General Virology 70:1755–1764
    [Google Scholar]
  3. Clark E. A., Ledbetter J. A. 1986; Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proceedings of the National Academy of Sciences, U.S.A 83:4494–4498
    [Google Scholar]
  4. Dambaugh T., Hennessy K., Fennewald S., Kieff E. 1986; The virus genome and its expression in latent infection. In The Epstein- Barr Virus: Recent Advances pp. 13–45 Epstein M. A., Achong B. G. Edited by London: Heinemann;
    [Google Scholar]
  5. Ernberg I., Falk K., Hansson M. 1987; Progenitor and pre-B lymphocytes transformed by Epstein-Barr virus. International Journal of Cancer 39:190–197
    [Google Scholar]
  6. Gordon J. 1989; Relationship between Epstein-Barr virus and the B lymphocyte. Advances in Viral Oncology 8:173–186
    [Google Scholar]
  7. Gregory C. D., Kirchgens C., Edwards C. F., Young L. S., Rowe M., Forster A., Rabbitts T. H., Rickinson A. B. 1987a; Epstein-Barr virus-transformed human precursor B cell lines: altered growth phenotype of lines with germline or rearranged but non-expressed heavy chain genes. European Journal of Immunology 17:1199–1207
    [Google Scholar]
  8. Gregory C. D., Tursz T., Edwards C. F., Tetaud C., Talbot M., Caillou B., Rickinson A. B., Lipinski M. 1987b; Identification of a subset of normal B cells with a Burkitt’s lymphoma (BL)-like phenotype. Journal of Immunology 139:313–318
    [Google Scholar]
  9. Gregory C. D., Edwards C. F., Milner A., Wiels J., Lipinski M., Rowe M., Tursz T., Rickinson A. B. 1988a; Isolation of a normal B cell subset with a Burkitt-like phenotype and transformation in vitro with Epstein-Barr virus. International Journal of Cancer 42:213–220
    [Google Scholar]
  10. Gregory C. D., Murray R. J., Edwards C. F., Rickinson A. B. 1988b; Down regulation of cell adhesion molecules LFA-3 and ICAM-1 in Epstein-Barr virus-positive Burkitt’s lymphoma underlies tumour cell escape from virus-specific T cell surveillance. Journal of Experimental Medicine 167:1811–1824
    [Google Scholar]
  11. Hammerschmidt W., Sugden B., Baichwal V. R. 1989; The transforming domain alone of the latent membrane protein of Epstein-Barr virus is toxic to cells when expressed at high levels. Journal of Virology 63:2469–2475
    [Google Scholar]
  12. Hildreth J. E. K., Gotch F. M., Hildreth P. D. K., Mcmichael A. J. 1983; A human lymphocyte-associated antigen involved in cell-mediated lympholysis. European Journal of Immunology 13:202–208
    [Google Scholar]
  13. Jalkanen S. T., Bargatze R. F., Herron L. R., Butcher E. C. 1986; A lymphoid cell surface glycoprotein involved in endothelial cell recognition and lymphocyte homing in man. European Journal of Immunology 16:1195–1202
    [Google Scholar]
  14. Johnson G. D., Davidson R. S., Mcnamee K. C., Russell G., Goodwin D., Holborrow E. J. 1982; Fading of immunofluorescence during microscopy: a study of this phenomenon and its remedy. Journal of Immunological Methods 55:231–242
    [Google Scholar]
  15. Katamine S., Otsu M., Tada K., Tsuchiya S., Sato T., Ishida N., Honjo T., Ono Y. 1984; Epstein-Barr virus transforms precursor B cells even before immunoglobulin gene rearrangements. Nature; London: 309369–372
    [Google Scholar]
  16. Knutson J. C., Sugden B. 1989; Immortalization of B lymphocytes by Epstein-Barr virus: what does the virus contribute to the cell?. Advances in Viral Oncology 8:151–172
    [Google Scholar]
  17. Laux G., Perricaudet M., Farrell P. J. 1988; A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO Journal 7:769–774
    [Google Scholar]
  18. Mann K. P., Staunton D., Thorley-Lawson D. A. 1985; Epstein-Barr virus-encoded protein found in plasma membranes of transformed cells. Journal of Virology 55:710–720
    [Google Scholar]
  19. Masucci M. G., Contreras-Salazar B., Ragnar E., Falk K., Minarovits J., Ernberg I., Klein G. 1989; 5-Azacytidine up regulates the expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) through EBNA-6 and latent membrane protein in the Burkitt’s lymphoma line Rael. Journal of Virology 63:3135–3141
    [Google Scholar]
  20. Moss D. J., Sculley T. B., Pope J. H. 1986; Induction of Epstein-Barr virus nuclear antigens. Journal of Virology 58:988–990
    [Google Scholar]
  21. Nadler L. M., Anderson K. C., Marti G., Bates M., Park E., Daley J. F., Schlossman S. F. 1983; B4, a human B lymphocyte-associated antigen expressed on normal, mitogen- activated and malignant B cells. Journal of Immunology 131:244–250
    [Google Scholar]
  22. Rooney C. M., Gregory C. D., Rowe M., Finerty S., Edwards C., Rupani H., Rickinson A. B. 1986; Endemic Burkitt’s lymphoma: phenotypic analysis of Burkitt’s lymphoma biopsy cells and of the derived tumour cell lines. Journal of the National Cancer Institute 77:681–687
    [Google Scholar]
  23. Rooney C. M., Howe J. G., Speck S. H., Miller G. 1989; Influences of Burkitt’s lymphoma and primary B cells on latent gene expression by the non-immortalising P3J-HR-1 strain of Epstein-Barr virus. Journal of Virology 63:1531–1539
    [Google Scholar]
  24. Rothlein R., Springer T. A. 1986; The requirement for lymphocyte function-associated antigen 1 in homotypic leucocyte adhesion stimulated by phorbol ester. Journal of Experimental Medicine 163:1132
    [Google Scholar]
  25. Rothlein R., Dustin M. L., Marlin S. D., Springer T. A. 1986; A human intercellular adhesion molecule (ICAM 1) distinct from LFA-1. Journal of Immunology 137:1270–1274
    [Google Scholar]
  26. Rowe D. T., Rowe M., Evan G. I., Wallace L. E., Farrell P. J., Rickinson A. B. 1986; Restricted expression of EBV latent genes and T-lymphocyte-detected membrane antigen in Burkitt’s lymphoma cells. EMBO Journal 5:2599–2607
    [Google Scholar]
  27. Rowe M., Hildreth J. E. K., Rickinson A. B., Epstein M. A. 1982; Monoclonal antibodies to Epstein-Barr virus-induced, transformation-associated cell surface antigens: binding patterns and effect upon virus-specific T-cell cytotoxicity. International Journal of Cancer 29:373–381
    [Google Scholar]
  28. Rowe M., Rooney C. M., Rickinson A. B., Lenoir G. M., Rupani H., Moss D. J., Stein H., Epstein M. A. 1985; Distinctions between endemic and sporadic forms of Epstein-Barr virus-positive Burkitt’s lymphoma. International Journal of Cancer 35:435–442
    [Google Scholar]
  29. Rowe M., Rowe D. T., Gregory C. D., Young L. S., Farrell P. J., Rupani H., Rickinson A. B. 1987a; Differences in B cell growth phenotype reflect novel patterns of Epstein-Barr virus latent gene expression in Burkitt’s lymphoma cells. EMBO Journal 6:2743–2751
    [Google Scholar]
  30. Rowe M., Evans H. S., Young L. S., Hennessy K., Kieff E., Rickinson A. B. 1987b; Monoclonal antibodies to the latent membrane protein of Epstein-Barr virus reveal heterogeneity of the protein and inducible expression in virus-transformed cells. Journal of General Virology 68:1575–1586
    [Google Scholar]
  31. Rowe M., Young L. S., Cadwallader K., Petti L., Kieff E., Rickinson A. B. 1989; Distinction between Epstein-Barr virus type A (EBNA 2A) and type B (EBNA 2B) isolates extends to the EBNA 3 family of nuclear proteins. Journal of Virology 63:1031–1039
    [Google Scholar]
  32. Sample J., Liebowitz D., Kieff E. 1989; Two related Epstein-Barr virus membrane proteins are encoded by separate genes. Journal of Virology 63:933–937
    [Google Scholar]
  33. Sanchez-Madrid F., Krensky A. M., Ware C. F., Robbins E., Strominger J. L., Burakoff S. J., Springer T. A. 1982; Three distinct antigens associated with human T lymphocyte-mediated cytolysis: LFA-1, LFA-2 and LFA-3. Proceedings of the National Academy of Sciences, U.S.A 79:7489–7493
    [Google Scholar]
  34. Schwab U., Stein H., Gerdes J., Lemke H., Kirchner H., Schaadt M., Diehl V. 1982; Production of a monoclonal antibody specific for Hodgkin and Stemberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature; London: 29965–67
    [Google Scholar]
  35. Shaw S., Luce G. E. G., Quinones R., Gress R. E., Springer T. A., Sanders M. E. 1986; Two antigen-independent adhesion pathways used by human cytotoxic T cell clones. Nature; London: 323262
    [Google Scholar]
  36. Speck S. H., Strominger J. L. 1989; Transcription of Epstein-Barr virus in latently infected growth transformed lymphocytes. Advances in Viral Oncology 8:133–150
    [Google Scholar]
  37. Stashenko P., Nadler L. M., Hardy R., Schlossman S. F. 1980; Characterization of a human B lymphocyte-specific antigen. Journal of Immunology 125:1678–1685
    [Google Scholar]
  38. Thorley-Lawson D. A., Mann K. P. 1985; Early events in Epstein-Barr virus infection provide a model for B cell activation. Journal of Experimental Medicine 161:45–59
    [Google Scholar]
  39. Wang D., Liebowitz D., Wang F., Gregory C., Rickinson A., Larson R., Springer T., Kieff E. 1988; Epstein-Barr virus latent infection membrane protein (LMP) alters human B lymphocyte phenotype: deletion of the amino terminus abolishes activity. Journal of Virology 62:4173–4184
    [Google Scholar]
  40. Wang F., Gregory C. D., Rowe M., Rickinson A. B., Wang D., Birkenbach M., Kikutani H., Kishimoto T., Kieff E. 1987a; Epstein-Barr virus nuclear antigen 2 specifically induces expression of the B cell activation antigen CD23. Proceedings of the National Academy of Sciences, U.S.A 84:3452–3456
    [Google Scholar]
  41. Wang F., Petti L., Braun D., Seung S., Kieff E. 1987b; A bicistronic Epstein-Barr virus mRNA encodes two nuclear proteins in latently infected growth-transformed lymphocytes. Journal of Virology 61:945–954
    [Google Scholar]
  42. Wiels J., Fellous M., Tursz T. 1981; Monoclonal antibody against a Burkitt lymphoma-associated antigen. Proceedings of the National Academy of Sciences, U.S.A 78:6485–6488
    [Google Scholar]
  43. Yates J., Warren N., Reisman D., Sugden B. 1984; A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently-infected cells. Proceedings of the National Academy of Sciences, U.S.A 81:3806–3810
    [Google Scholar]
  44. Young L., Alfieri C, Evans H., O’Hara C., Anderson K. C., Ritz J., Shapiro R. S., Rickinson A., Kieff E., Cohen J. I. 1989; Expression of Epstein-Barr virus transformation-associated genes in tissues of patients with EBV lymphoproliferative disease. New England Journal of Medicine 321:1080–1085
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-7-1481
Loading
/content/journal/jgv/10.1099/0022-1317-71-7-1481
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error