1887

Abstract

The nucleotide sequence of the genomic RNA2 (3774 nucleotides) of grapevine fanleaf virus strain FI 3 was determined from overlapping cDNA clones and its genetic organization was deduced. Two rapid and efficient methods were used for cDNA cloning of the 5′ region of RNA2. The complete sequence contained only one long open reading frame of 3555 nucleotides (1184 codons, 13IK product). The analysis of the N- terminal sequence of purified coat protein (CP) and identification of its C-terminal residue have allowed the CP cistron to be precisely positioned within the polyprotein. The CP produced by proteolytic cleavage at the Arg/Gly site between residues 680 and 681 contains 504 amino acids ( 56019) and has hydrophobic properties. The Arg/Gly cleavage site deduced by N-terminal amino acid sequence analysis is the first for a nepovirus coat protein and for plant viruses expressing their genomic RNAs by polyprotein synthesis. Comparison of GFLV RNA2 with M RNA of cowpea mosaic comovirus and with RNA2 of two closely related nepoviruses, tomato black ring virus and Hungarian grapevine chrome mosaic virus, showed strong similarities among the 3′ non-coding regions but less similarity among the 5′ end non-coding sequences than reported among other nepovirus RNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-7-1433
1990-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/7/JV0710071433.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-7-1433&mimeType=html&fmt=ahah

References

  1. Brault V., Hibrand L., Candresse T., Le Gall O., Dunez J. 1989; Nucleotide sequence and genetic organization of Hungarian grapevine chrome mosaic nepovirus RNA2. Nucleic Acids Research 17:7809–7819
    [Google Scholar]
  2. Chu P. W. G., Francki R. I. B. 1979; The chemical subunit of tobacco ringspot virus coat protein. Virology 93:398–412
    [Google Scholar]
  3. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  4. Forster R. L. S., Morris-Krsinich B. A. M. 1985; Synthesis and processing of the translation products of tobacco ringspot virus in reticulocyte lysates. Virology 144:516–519
    [Google Scholar]
  5. Fraenkel-Conrat H. 1957; Degradation of tobacco mosaic virus with acetic acid. Virology 4:1–4
    [Google Scholar]
  6. French S., Robson B. 1983; What is a conservative substitution?. Journal of Molecular Evolution 19:171–175
    [Google Scholar]
  7. Fuchs M., Pinck M., Serghini M. A., Ravelonandro M., Walter B., Pinck L. 1989; The nucleotide sequence of satellite RNA in grapevine fanleaf virus, strain F13. Journal of General Virology 70:955–962
    [Google Scholar]
  8. Heidecker G., Messing J. 1983; Sequence analysis of zeincDNAs obtained by an efficient mRNA cloning method. Nucleic Acids Research 11:4891–4906
    [Google Scholar]
  9. Hemmer O., Meyer M., Greif C., Fritsch C. 1987; Comparison of the nucleotide sequences of five tomato black ring virus satellite RNAs. Journal of General Virology 68:1823–1833
    [Google Scholar]
  10. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. 1981; A gas-liquid solid phase peptide and protein sequenator. Journal of Biological Chemistry 256:7990–7997
    [Google Scholar]
  11. Hubacek J., Glover S. W. 1970; Complementation analysis of a temperature-sensitive host specificity mutation in E. coli . Journal of Molecular Biology 50:111–127
    [Google Scholar]
  12. Kozak M. 1981; Possible role of flanking nucleotides in recognition of the AUG initiator codon by eukaryotic ribosomes. Nucleic Acids Research 9:5233–5252
    [Google Scholar]
  13. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  15. Meyer M., Hemmer O., Mayo M. A., Fritsch C. 1986; The nucleotide sequence of tomato black ring virus RNA-2. Journal of General Virology 67:1257–1271
    [Google Scholar]
  16. Morris-Krsinich B. A. M., Forster R. L. S., Mossop D. W. 1983; The synthesis and processing of the nepovirus grapevine fanleaf virus proteins in rabbit reticulocyte lysate. Virology 130:523–526
    [Google Scholar]
  17. Murant A. F., Mayo M. A. 1982; Satellites of plant viruses. Annual Review of Phytopathology 20:49–70
    [Google Scholar]
  18. Nowak T., Farber P. M., Wengler G., Wengler G. 1989; Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology 169:365–376
    [Google Scholar]
  19. Okayama H., Berg P. 1982; High-efficiency cloning of full-length cDNA. Molecular and Cellular Biology 2:161–170
    [Google Scholar]
  20. Pinck L., Fuchs M., Pinck M., Ravelonandro M., Walter B. 1988; A satellite RNA in grapevine fanleaf virus strain F13. Journal of General Virology 69:233–239
    [Google Scholar]
  21. Poch O., Daney de Marcillac G., Exinger F., Roy A., Losson R. 1988; Functional domains of the regulatory protein PPR1: use of the V.R.P. computer program. Yeast 4:S416
    [Google Scholar]
  22. Quacquarelli A., Gallitelli D., Savino V., Martelli G. P. 1976; Properties of grapevine fanleaf virus. Journal of General Virology 32:349–360
    [Google Scholar]
  23. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  24. Rice C. M., Aebersold R., Teplow D. B., Pata J., Bell J. R., Vorndam A. V., Trent D. W., Brandriss M. W., Schlesinger J. J., Strauss J. H. 1986; Partial N-terminal amino acid sequences of three nonstructural proteins of two flaviviruses. Virology 151:1–9
    [Google Scholar]
  25. Rutledge R. G., Seligy V. L., Cote M. J., Dimock K., Lewin L. L., Tenniswood M. P. 1988; Rapid synthesis and cloning of complementary DNA from any RNA molecule into plasmid and phase M13 vectors. Gene 68:151–158
    [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  27. Serghini M. A., Ritzenthaler C., Pinck L. 1989; A rapid and efficient ‘miniprep’ for isolation of plasmid DNA. Nucleic Acids Research 17:3604
    [Google Scholar]
  28. Sumiyoshi H., Mori C., Fuke I., Morita K., Kuhara S., Kondou J., Kikuchi Y., Nagamatu H., Igarashi A. 1987; Complete nucleotide sequence of the Japanese encephalitis virus genome RNA. Virology 161:497–510
    [Google Scholar]
  29. Tabor S., Richardson C. C. 1987; DNA sequence analysis with a modified bacteriophage T7 DNA polymerase. Proceedings of the National Academy of Sciences, U.S.A 84:4767–4771
    [Google Scholar]
  30. Van Wezenbeek P., Verver J., Harmsen J., Vos P., Van Kammen A. 1983; Primary structure and gene organization of the middle-component RNA of cowpea mosaic virus. EMBO Journal 2:941–946
    [Google Scholar]
  31. Wellink J., Van Kammen A. 1988; Proteases involved in the processing of viral polyproteins. Archives of Virology 98:1–26
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-7-1433
Loading
/content/journal/jgv/10.1099/0022-1317-71-7-1433
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error