Inhibition of equine herpesvirus type 1 subtype 1-induced ribonucleotide reductase by the nonapeptide YAGAVVNDL Free

Abstract

The synthetic nonapeptide YAGAVVNDL [identical to the nine carboxy-terminal amino acids of the small subunit of herpes simplex virus (HSV)-encoded ribonucleotide reductase (RR)] was found to inhibit the RR activity induced by equine herpesvirus type 1 subtype 1 (EHV-1). Parallel experiments with HSV type 1 (HSV- l)-encoded RR established that the concentration of peptide required to inhibit 50% of the RR activity was 28 μ for both enzymes. The optimum pH for the EHV-1 enzyme was found to be between 8·0 and 8·1 which is the same as that of HSV-1 RR. By use of antisera made against peptides corresponding to different regions of the large subunit (RR1) of the HSV-1 enzyme and monoclonal antibodies directed against HSV-1 RR1 we have obtained evidence which suggests that the EHV-1 large subunit has an r of approximately 90000 and lacks the N-terminal domain which is so far unique to HSV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-6-1373
1990-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/6/JV0710061373.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-6-1373&mimeType=html&fmt=ahah

References

  1. Averett D. R., Lubbers C., Elion G. B., Spector T. 1983; Ribonucleotidereductase induced by herpes simplex type 1 virus. Characterization of a distinct enzyme. Journal of Biological Chemistry 258:9831–9838
    [Google Scholar]
  2. Bacchetti S., Evelegh M. J., Muirhead B. 1986; Identification and separation of the two subunits of the herpes simplex virus ribonucleotidereductase. Journal of Virology 57:1177–1181
    [Google Scholar]
  3. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  4. Cameron J. M., Mcdougall I., Marsden H. S., Preston V. G., Ryan D. M., Subak-Sharpe J. H. 1988; Ribonucleotidereductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. Journal of General Virology 69:2607–2612
    [Google Scholar]
  5. Cohen E. A., Charron J., Perret J., Langelier Y. 1985; Herpes simplex virus ribonucleotidereductase induced in infected BHK-21/C13 cells: biochemical evidence for the existence of two non-identical subunits, HI and H2. Journal of General Virology 66:733–745
    [Google Scholar]
  6. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. 1986; Specific inhibition of herpesvirusribonucleotidereductase by a nonapeptide derived from the carboxy terminus of subunit 2. Nature; London: 321441–443
    [Google Scholar]
  7. Cohen E. A., Paradis H., Gaudreau P., Brazeau P., Langelier Y. 1987; Identification of viral polypeptides involved in pseudorabies virus ribonucleotidereductase activity. Journal of Virology 61:2046–2049
    [Google Scholar]
  8. Cohen J. C., Henry B. E., Randall C. C., O’Callaghan D. J. 1977; Ribonucleotidereductase activity in hydroxyurea resistant herpesvirus replication. Proceedings of the Society for Experimental Biology and Medicine 155:395–399
    [Google Scholar]
  9. Cullinane A. A., Rixon F. J., Davison A. J. 1988; Characterization of the genome of equine herpesvirus 1 subtype 2. Journal of General Virology 69:1575–1590
    [Google Scholar]
  10. Darling A. J., Dutia B. M., Marsden H. S. 1987; Improved method for the measurement of ribonucleotidereductase activity. Journal of Virological Methods 180:281–290
    [Google Scholar]
  11. Darling A. J., Mackay E. M., Ingemarson R., Preston V. G. 1988; Reconstitution of herpes simplex virus type 1 ribonucleotide reductase activity from the large and small subunits. Virus Genes 2:163–176
    [Google Scholar]
  12. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  13. Dutia B. M. 1983; Ribonucleotide reductase induced by herpes simplex virus has a virus-specified constituent. Journal of General Virology 64:513–521
    [Google Scholar]
  14. Dutia B. M., Frame M. C., Subak-Sharpe J. H., Clark W. N., Marsden H. S. 1986; Specific inhibition of herpesvirusribonucleotidereductase by synthetic peptides. Nature; London: 321439–441
    [Google Scholar]
  15. Eriksson S., Sjöberg B.-M. 1989; Ribonucleotide reductase. In Allosteric Enzymes pp. 189–217 Herve G. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  16. Frame M. C., Marsden H. S., Dutia B. M. 1985; The ribonucleotidereductase induced by herpes simplex virus type-1 involves minimally a complex of two polypeptides (136K and 38K). Journal of General Virology 66:1581–1587
    [Google Scholar]
  17. Frame M. C., Mcgeoch D. J., Rixon F. J., Orr A. C., Marsden H. S. 1986; The 10K virion phosphoprotein encoded by gene US9 from herpes simplex virus type 1. Virology 150:321–332
    [Google Scholar]
  18. Frame M. C., Purves F. C., Mcgeoch D. J., Marsden H. S., Leader D. P. 1987; Identification of the herpes simplex virus protein kinase as the product of viral gene US3. Journal of General Virology 68:2699–2704
    [Google Scholar]
  19. Gaudreau P., Michaud J., Cohen E. A., Langelier Y., Brazeau P. 1987; Structure-activity studies on synthetic peptides inhibiting herpes simplex virus ribonucleotide reductase. Journal of Biological Chemistry 262:12413–12416
    [Google Scholar]
  20. Gibson T., Stockwell P., Ginsberg M., Barrell B. 1984; Homology between two EBV early genes and HSV ribonucleotide reductase and 38K genes. Nucleic Acids Research 12:5087–5099
    [Google Scholar]
  21. Henry B. E., Robinson R. A., Dauenhauer S. A., Atherton S. S., Hayward G. S., O’Callaghan D. J. 1981; Structure of the genome of equine herpesvirus type 1. Virology 115:97–114
    [Google Scholar]
  22. Ingemarson R., Lankinen H. 1987; The herpes simplex virus type 1 ribonucleotidereductase is a tight complex of the type α2β2 composed of 40k and 140k proteins, of which the latter shows multiple forms due to proteolysis. Journal of Virology 156:417–422
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  24. Lammers M., Follman H. 1983; The ribonucleotide reductases - a unique group of metalloenzymes essential for cell proliferation. Structure and Bonding 54:27–91
    [Google Scholar]
  25. Lankinen H., Gräslund A., Thelander L. 1982; Induction of a new ribonucleotidereductase after infection of mouse L cells with pseudorabies virus. Journal of Virology 41:893–900
    [Google Scholar]
  26. Lankinen H., Telford E., Macdonald D., Marsden H. 1989; The unique N-terminal domain of the large subunit of herpes simplex virus is preferentially sensitive to proteolysis. Journal of General Virology 70:3159–3169
    [Google Scholar]
  27. Mcclements W., Yamanaka G., Garsky V., Perry H., Bacchetti S., Colonno R., Stein R. B. 1988; Oligopeptides inhibit the ribonucleotide reductase of herpes simplex virus by causing subunit separation. Virology 162:270–273
    [Google Scholar]
  28. Mcgeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., Mcnab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  29. Mclauchlan J., Clements J. B. 1983; DNA sequence homology between two co-linear loci on the HSV genome which have different transforming abilities. EMBO Journal 2:1953–1961
    [Google Scholar]
  30. Macpherson I., Stoker M. G. 1962; Polyoma transformation of hamster cell clones - an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  31. Nikas I., Mclauchlan J., Davison A. J., Taylor W. R., Clements J. B. 1986; Structural features of ribonucleotidereductase. Proteins: Structure, Function and Genetics 1:376–384
    [Google Scholar]
  32. O’Callaghan D. J., Cheevers W. P., Gentry G. A., Randall C. C. 1968; Kinetics of cellular and viral DNA synthesis in equine abortion (herpes) virus infection of L-M cells. Virology 36:104–114
    [Google Scholar]
  33. O’Callaghan D. J., Gentry G. A., Randall C. C. 1983; The equine herpesviruses. In The Herpesviruses 2 pp. 215–238 Fraenkel-Conrat H., Wagner R. R. Edited by New York: Plenum Press;
    [Google Scholar]
  34. Preston V. G., Palfreyman J. W., Dutia B. M. 1984; Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotide reductase. Journal of General Virology 65:1457–1466
    [Google Scholar]
  35. Preston V. G., Darling A. J., Mcdougall I. M. 1988; The herpes simplex type 1 temperature-sensitive mutant ts 1222 has a single base pair deletion in the small subunit of ribonucleotide reductase. Virology 167:458–467
    [Google Scholar]
  36. Reichard P. 1988; Interactions between deoxyribonucleotide and DNA synthesis. Annual Review of Biochemistry 57:349–374
    [Google Scholar]
  37. Rollinson E. A. 1989; Prospects for the development of antiviral agents for veterinary use. In Antiviral Agents: the Development and Assessment of Antiviral Chemotherapy 2 pp. 85–117 Field H. J. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  38. Swain M. A., Galloway D. A. 1986; Herpes simplex virus specifies two subunits of ribonucleotide reductase encoded by 3′ coterminal transcripts. Journal of Virology 57:802–808
    [Google Scholar]
  39. Thelander L., Reichard P. 1979; Reduction of ribonucleotides. Annual Review of Biochemistry 48:133–158
    [Google Scholar]
  40. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, U.S.A 76:4350–4354
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-6-1373
Loading
/content/journal/jgv/10.1099/0022-1317-71-6-1373
Loading

Data & Media loading...

Most cited Most Cited RSS feed