1887

Abstract

Four major antigenic sites have been delineated on the spike protein (S) of the porcine enteric coronavirus transmissible gastroenteritis virus (TGEV) in previous topological studies using monoclonal antibodies (MAbs). Correlation of these sites with the physical structure of the protein was achieved by use of different approaches. Recombinant pEX plasmids directing the synthesis of various fused S polypeptides were constructed. A hybrid protein containing nine S-specific residues (363 to 371) was shown to express site C epitopes. The other sites were localized through study of the antigenic activity of fragments generated by controlled cleavage of the native protein with different endopeptidases. Two identified cleavage products of 26K and 13K, immunoreactive to site A-B- and site D-specific MAbs respectively, could be aligned on the S primary structure according to N-terminal sequence data. This led us to propose that the major neutralization domain A-B is contained in a region of approximately 200 residues with residue 506 as its N boundary. Similarly, site D epitopes should be located within a stretch of 130 residues, starting at 82 residues from the N terminus. Point mutations identified by direct RNA sequencing of neutralization-resistant mutants were consistent with the proposed location of these sites.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-6-1313
1990-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/6/JV0710061313.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-6-1313&mimeType=html&fmt=ahah

References

  1. Cavanagh D., Davis P. J., Mockett A. P. A. 1988; Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Research 11:141–150
    [Google Scholar]
  2. Correa I., Jimenez G., Sune C., Bullido M. J., Enjuanes L. 1988; Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Research 10:77–94
    [Google Scholar]
  3. De Groot R. J., Maduro J., Lenstra J. A., Horzinek M. C., van der Zeijst B. A. M., Spaan W. J. M. 1987; cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. Journal of General Virology 68:2639–2646
    [Google Scholar]
  4. Delmas B., Gelfi J., Laude H. 1986; Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. Journal of General Virology 67:1405–1418
    [Google Scholar]
  5. Garwes D. J., Pocock D. H. 1975; The polypeptide structure of transmissible gastroenteritis virus. Journal of General Virology 29:25–34
    [Google Scholar]
  6. Garwes D. J., Stewart F., Elleman C. J. 1987; Identification of epitopes of immunological importance on the peplomer of porcine transmissible gastroenteritis virus. In Coronaviruses pp. 509–515 Lai M. M. C., Stohlman S. Edited by New York & London: Plenum Press;
    [Google Scholar]
  7. Geysen H. M., Mason T. J., Rodda S. J. 1988; Cognitive features of continuous antigenic determinants. Journal of Molecular Recognition 1:32–41
    [Google Scholar]
  8. Gibrat J. F., Garnier J., Robson B. 1987; Further developments of protein secondary structure prediction using information theory. New parameters and consideration of residue pairs. Journal of Molecular Biology 198:425–443
    [Google Scholar]
  9. Horzinek M. C., Lutz H., Pedersen N. C. 1982; Antigenic relationships among homologous structural polypeptides of porcine, feline and canine coronaviruses. Infection and Immunity 37:1148–1155
    [Google Scholar]
  10. Jacobs L., de Groot R., van der Zeijst B. A. M., Horzinek M. C., Spaan W. J. M. 1987; The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus (FIPV). Virus Research 8:363–371
    [Google Scholar]
  11. Huynh T. V., Young R. A., Davis R. W. 1985; Constructing and screening cDNA libraries in λgt10 and λgt11. In DNA Cloning 1 pp. 49–78 Glover D. M. Edited by Oxford & Washington, D.C: IRL Press;
    [Google Scholar]
  12. Janin J. 1979; Surface and inside volumes in globular proteins. Nature; London: 277491–492
    [Google Scholar]
  13. Kapke P. A., Brian D. A. 1986; Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology 151:41–49
    [Google Scholar]
  14. Keil B. 1987; Proteolysis data bank: specificity of alpha-chymotrypsin from computation of protein cleavages. Protein Sequence Data Analysis 1:13–20
    [Google Scholar]
  15. Laude H., Chapsal J.-M., Gelfi J., Labiau S., Grosclaude J. 1986; Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. Journal of General Virology 67:119–130
    [Google Scholar]
  16. Laude H., Rasschaert D., Huet J.-C. 1987; Sequence and N-terminal processing of the transmembrane protein El of the coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1687–1693
    [Google Scholar]
  17. Laude H., Gelfi J., Rasschaert D., Delmas B. 1988; Caractérisation antigénique du coronavirus respiratoire porcin à l’aide d’anticorps monoclonaux dirigés contre le virus de la gastroentérite transmissible. Journées Recherche Porcine en France 20:89–94
    [Google Scholar]
  18. Lenstra J. A., Kusters J. G., Koch G., van der Zeijst B. A. M. 1989; Antigenicity of the peplomer protein of infectious bronchitis virus. Molecular Immunology 26:7–15
    [Google Scholar]
  19. Lim H. M., Pène J. J. 1988; Optimal conditions for supercoil DNA sequencing with the Escherichia coli DNA polymerase I large fragment. Gene Analysis Techniques 5:32–39
    [Google Scholar]
  20. Lin H. C., Lei S. P., Wilcox G. 1985; An improved DNA sequencing strategy. Analytical Biochemistry 147:114–119
    [Google Scholar]
  21. Luytjes W., Geerts D., Posthumus W., Meloen R., Spaan W. J. M. 1989; Amino acid sequence of a conserved neutralizing epitope of murine coronaviruses. Journal of Virology 63:1408–1412
    [Google Scholar]
  22. Makino S., Fleming J. O., Keck J. G., Stohlman S. A., Lai M. M. C. 1987; RNA recombination of coronaviruses: localization of neutralizing epitopes and neuropathogenic determinants on the carboxyl terminus of peplomers. Proceedings of the National Academy of Sciences, U.S.A 84:6567–6571
    [Google Scholar]
  23. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Rasschaert D., Laude H. 1987; The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1883–1890
    [Google Scholar]
  25. Rasschaert D., Gelfi J., Laude H. 1987; Enteric coronavirus TGEV: partial sequence of the genomic RNA, its organization and expression. Biochimie 69:591–600
    [Google Scholar]
  26. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  27. Stanley K. K., Luzio J. P. 1984; Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO Journal 3:1429–1434
    [Google Scholar]
  28. Talbot P. J., Dionne G., Lacroix M. 1988; Vaccination against lethal coronavirus-induced encephalitis with a synthetic decapeptide homologous to a domain in the predicted peplomer stalk. Journal of Virology 62:3032–3036
    [Google Scholar]
  29. van Wart H. E., Steinbrink D. R. 1985; Complementary substrate specificities of class I and class II collagenases from Clostridium histolyticum. Biochemistry 24:6520–6526
    [Google Scholar]
  30. Zimmern D., Kaesberg P. 1978; 3′-terminal nucleotide sequence of encephalomyocarditis virus RNA determined by reverse transcriptase and chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 75:4257–4261
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-6-1313
Loading
/content/journal/jgv/10.1099/0022-1317-71-6-1313
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error