1887

Abstract

A number of different influenza C virus strains were tested for their fusion properties using a resonance energy assay which allows direct monitoring of fusion between virus membranes and artificial lipid vesicles. The fusion pH of various strains was found to range between 5.6 and 6.1. Haemolytic activity of the different strains with chicken erythrocytes was observed at slightly lower pH values and varied between 5.1 and 5.7. Studies of the kinetics of influenza C virus fusion showed distinct characteristics in fusion activity. A lag before onset of fusion was found with influenza C virus which was not observed for influenza A or B viruses. In addition, studies on the rate of conformational change of the influenza C virus glycoprotein, as determined by morphological changes and endogenous tryptophan fluorescence, suggest that the conformational change is rate-limiting in the fusion process, whereas for influenza A viruses the glycoprotein conformational change is fast and a later step in the fusion process is rate-limiting. Monitoring the conformational change of influenza C virus glycoprotein by the onset of trypsin susceptibility showed, however, that membrane fusion occurred in some cases without onset of trypsin susceptibility, indicating that the trypsin-susceptible conformation is a post-fusogenic conformation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-5-1181
1990-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/5/JV0710051181.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-5-1181&mimeType=html&fmt=ahah

References

  1. Blumenthal R., Puri A., Sarkar D. P., Chen Y., Eidelman O., Morris S. J. 1989; Membrane fusion mediated by viral spike glycoproteins. In Cell Biology of Virus Entry, Replication, and Pathogenesis pp 197–217 Compans R. W., Helenius A., Oldstone M. B. A. Edited by New York: Alan R. Liss;
    [Google Scholar]
  2. Buonagurio D. A., Nakada S., Desselberger U., Krystal M., Palese P. 1985; Noncumulative sequence changes in the hemag- glutmin genes of influenza C virus isolates. Virology 146:221–232
    [Google Scholar]
  3. Daniels R. S., Douglas A. R., Skehel J. J., Waterfield M. D., Wilson I. A., Wiley D. C. 1983; Studies of the influenza virus haemagglutinin in the pH 5 conformation. In The Origin of Pandemic Influenza Viruses pp 1–7 Laver W. G. Edited by New York: Elsevier;
    [Google Scholar]
  4. Daniels R. S., Downie J. C., Hay A. J., Knossow M., Skehel J. J., Wang M. L., Wiley D. C. 1985; Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40:431–439
    [Google Scholar]
  5. Doms R. W., Helenius A., White J. 1985; Membrane fusion activity of the influenza virus hemagglutinin. Journal of Biological Chemistry 260:2973–2981
    [Google Scholar]
  6. Formanowski F., Meier-Ewert H. 1988; Isolation of the influenza C virus glycoprotein in a soluble form by bromelain digestion. Virus Research 10:177–192
    [Google Scholar]
  7. Formanowski F., Wrigley N. G., Meier-Ewert H. 1989; Structural and morphological properties of the isolated glycoprotein of influenza C virus. In Genetics and Pathogenicity of Negative Strand Viruses pp 16–23 Kolakofsky D., Mahy B. W. J. Edited by Amsterdam: Elsevier;
    [Google Scholar]
  8. Herrler G., Klenk H.-D. 1987; The surface receptor is a major determinant of the cell tropism of influenza C virus. Virology 159:102–108
    [Google Scholar]
  9. Herrler G., Compans R. W., Meier-Ewert H. 1979; A precursor glycoprotein in influenza C virus. Virology 99:49–56
    [Google Scholar]
  10. Herrler G., Nagele A., Meier-Ewert H., Bhown A. S., Compans R. W. 1981; Isolation and structural analysis of influenza C virion glycoprotein. Virology 113:439–451
    [Google Scholar]
  11. Herrler G., Rott R., Klenk H.-D., Müller H.-P., Shukla A. K., Schauer R. 1985; The receptor-destroying enzyme of influenza C virus is neuraminate-O-acetylesterase. EMBO Journal 4:1503–1506
    [Google Scholar]
  12. Herrler G., Dürkop I., Becht H., Klenk H.-D. 1988; The glycoprotein of influenza C virus is the haemagglutinin, esterase and fusion factor. Journal of General Virology 69:839–846
    [Google Scholar]
  13. Hewat E. A., Cusack S., Ruigrok R. W. H., Verwey C. 1984; Low resolution structure of the influenza C glycoprotein determined by electron microscopy. Journal of Molecular Biology 175:175–193
    [Google Scholar]
  14. Huang R. T. C., Rott R., Klenk H.-D. 1981; Influenza viruses cause hemolysis and fusion of cells. Virology 110:243–247
    [Google Scholar]
  15. Kitame F., Sugawara K., Ohwada K., Homma M. 1982; Proteolytic activation of hemolysis and fusion by influenza C virus. Archives of Virology 73:357–361
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  17. Lear J. D., DeGrado W. 1987; Membrane binding and conformational properties of peptides representing the NH2terminus of influenza HA-2. Journal of Biological Chemistry 262:6500–6505
    [Google Scholar]
  18. Ohuchi M., Ohuchi R., Mifune K. 1982; Demonstration of hemolytic and fusion activities of influenza C virus. Journal of Virology 42:1076–1079
    [Google Scholar]
  19. Pfeifer J. B., Compans R. W. 1984; Structure of the influenza C glycoprotein gene as determined from cloned DNA. Virus Research 1:281–296
    [Google Scholar]
  20. Rogers G. N., Herrler G., Paulson J. C., Klenk H.-D. 1986; Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. Journal of Biological Chemistry 261:5947–5951
    [Google Scholar]
  21. Ruigrok R. W. H., Wrigley N. G., Calder L. J., Cusack S., Wharton S. A., Brown E. B., Skehel J. J. 1986; Electron microscopy of the low pH structure of influenza virus haemagglu- tinin. EMBO Journal 5:41–49
    [Google Scholar]
  22. Ruigrok R. W. H., Aitken A., Calder L. J., Martin S. R., Skehel J. J., Wharton S. A., Weis W., Wiley D. C. 1988; Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion. Journal of General Virology 69:2785–2795
    [Google Scholar]
  23. Sato S. B., Kawasaki K., Ohnishi S.-I. 1983; Hemolytic activity of influenza virus hemagglutinin glycoproteins activated in mildly acidic environments. Proceedings of the National Academy of Sciences U.S.A.: 803153–3157
    [Google Scholar]
  24. Skehel J. J., Schild G. C. 1971; The polypeptide composition of influenza A viruses. Virology 44:396–408
    [Google Scholar]
  25. Skehel J. J., Bayley P. M., Brown E. B., Martin S. R., Waterfield M. D., White J. M., Wilson I. A., Wiley D. C. 1982; Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proceedings of the National Academy of Sciences U.S.A.: 79968–972
    [Google Scholar]
  26. Stegmann T., Hoekstra D., Scherphof G., Wilschut J. 1985; Kinetics of pH-dependent fusion between influenza virus and liposomes. Biochemistry 24:3107–3113
    [Google Scholar]
  27. Stuart-Harris C. H., Schild G. C., Oxford J. S. 1985 Influenza: the Viruses and the Disease, 2nd edn.. London: Edward Arnold;
    [Google Scholar]
  28. Sugawara K., Ohuchi M., Nakamura K., Homma M. 1981; Effects of various proteases on the glycoprotein composition and the infectivity of influenza C virus. Archives of Virology 68:147–151
    [Google Scholar]
  29. Vlasak R., Krystal M., Nacht M., Palese P. 1987; The influenza C virus glycoprotein (HE) exhibits receptor-binding (hemagglutinin) and receptor-destroying (esterase) activities. Virology 160:419–425
    [Google Scholar]
  30. Wharton S. A. 1987; The role of influenza virus haemagglutinin in membrane fusion. Microbiological Sciences 4:119–124
    [Google Scholar]
  31. Wharton S. A., Skehel J. J., Wiley D. C. 1986; Studies of influenza haemagglutinin-mediated fusion. Virology 149:27–35
    [Google Scholar]
  32. Wharton S. A., Ruigrok R. W. H., Martin S. R., Skehel J. J., Bayley P. M., Weis W., Wiley D. C. 1988a; Conformational aspects of the acid-induced fusion mechanism of influenza virus hemagglutinin. Journal of Biological Chemistry 263:4474–4480
    [Google Scholar]
  33. Wharton S.A, Ruigrok R. W. H., Skehel J. J., Wiley D. C. 1988b; Membrane fusion by peptide analogues of influenza virus haemagglutinin. Journal of General Virology 69:1847–1857
    [Google Scholar]
  34. White J., Kielian M., Helenius A. 1983; Membrane fusion proteins of enveloped animal viruses. Quarterly Review of Biophysics 16:151–195
    [Google Scholar]
  35. Wrigley N. G., Brown E., Chillingworth R. K. 1983; Combining accurate defocus with low-dose imaging in high resolution electron microscopy of biological material. Journal of Microscopy 130:225–232
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-5-1181
Loading
/content/journal/jgv/10.1099/0022-1317-71-5-1181
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error