Sequence Comparison of Five Polymerases (L proteins) of Unsegmented Negative-strand RNA Viruses: Theoretical Assignment of Functional Domains Free

Abstract

The large (L) protein subunit of unsegmented negative-strand RNA virus polymerases is thought to be responsible for the majority of enzymic activities involved in viral transcription and replication. In order to gain insight into this multifunctional role we compared the deduced amino acid sequences of five L proteins of rhabdoviruses (vesicular stomatitis virus and rabies virus) or paramyxoviruses (Sendai virus, Newcastle disease virus and measles virus). Statistical analysis showed that they share an atypical amino acid usage, outlining the uniqueness of the negative-strand virus life style. Similarity studies between L proteins traced evolutionary relationships in partial disagreement with the present taxonomic arrangement of this group of viruses. The five L proteins exhibit a high degree of homology along most of their length, with strongly invariant amino acids embedded in conserved blocks separated by variable regions, suggesting a structure of concatenated functional domains. The most highly conserved central block contains the probable active site for RNA synthesis. We tentatively identified some other functional sites, distributed around this central core, that would naturally work together to assure the polymerase activity. This provides detailed guidelines for the future study of L proteins by site-directed mutagenesis.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-5-1153
1990-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/5/JV0710051153.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-5-1153&mimeType=html&fmt=ahah

References

  1. Abraham G., Rhodes D., Banerjee A. K. 1975; 5ʹ-Terminal structure of methylated mRN A synthesized in vitro by vesicular stomatitis virus. Cell 5:51–58
    [Google Scholar]
  2. Bachmair A., Finley D., Varshavsky A. 1986; In vivo half-time of a protein is a function of its amino-terminal residue. Science 234:179–186
    [Google Scholar]
  3. Banerjee A. K. 1987a; Transcription and replication of rhabdovir-uses. Microbiological Reviews 51:66–87
    [Google Scholar]
  4. Banerjee A. K. 1987b; The transcription complex of vesicular stomatitis virus. Cell 48:363–364
    [Google Scholar]
  5. Basu A., Nanduri V. B., Gerard G. F., Modak M. J. 1988; substrate binding domain of murine leukemia virus reverse transcriptase. Journal of Biological Chemistry 263:1648–1653
    [Google Scholar]
  6. Belle-Isle H. D., Emerson S. U. 1982; Use of a hybrid infectivity assay to analyse the primary transcription of temperature-sensitive mutants of the New Jersey serotype of vesicular stomatitis virus. Journal of Virology 43:37–40
    [Google Scholar]
  7. Berg J. M. 1986; Potential metal-binding domains in nucleic acid binding proteins. Science 232:485–487
    [Google Scholar]
  8. Blumberg B. M., Crowley J. C., Silverman J. I., Menonna J.COOK, Dowling P. C. 1988; Measles virus L protein evidences elements of ancestral RNA polymerase. Virology 164:487–497
    [Google Scholar]
  9. Bonitz S. G., Coruzzi G., Thalenfeld B. E., Tzagoloff A., Macino G. 1980; Assembly of the mitochondrial membrane system. Journal of Biological Chemistry 255:11927–11941
    [Google Scholar]
  10. Cattaneo R., Kaelin K., Baczko K., Billeter M. A. 1989; Measles virus editing provides an additional cysteine-rich protein. Cell 56:759–764
    [Google Scholar]
  11. Chambers P., Millar N. S., Platt S. G., Emmerson P. T. 1986; Nucleotide sequence of the gene encoding the matrix protein of Newcastle disease virus. Nucleic Acids Research 14:9051–9061
    [Google Scholar]
  12. Chiu I. M., Yaniv A., Dahlberg J. E., Gazit A., Skuntz S. F., Tronick S. R., Aaronson S. A. 1985; Nucleotide sequence evidence for relationship of AIDS retrovirus to lentivirus. Nature; London: 317366–368
    [Google Scholar]
  13. Claverie J. M., Bougueleret L. 1986; Heuristic informational analysis of sequences. Nucleic Acids Research 14:179–196
    [Google Scholar]
  14. Claverie J. M., Bricault L. 1986; PseqlP: a nonredundant and exhaustive protein sequence data bank generated from 4 major existing collections. Proteins 1:60–65
    [Google Scholar]
  15. Collins P. L., Hightower L. E., Ball L. A. 1980; Transcriptional map for Newcastle disease virus. Journal of Virology 35:682–693
    [Google Scholar]
  16. Feldhaus A. L., Lesnaw J. A. 1988; Nucleotide sequence of the L gene of vesicular stomatitis virus (New Jersey): identification of conserved domains in the New Jersey and Indiana L proteins. Virology 163:359–368
    [Google Scholar]
  17. Flamand A. 1970; Etude génétique du virus de la stomatite vesiculaire: classement de mutants thermosensibles spontanes en groupes de complémentation. Journal of General Virology 8:187–195
    [Google Scholar]
  18. Flamand A. 1980; Rhabdovirus genetics. In Rhabdoviruses 2 pp 115–139 Bishop D. H. L. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  19. Flamand A., Delagneau J. F., Bussereau F. 1978; An RNA polymerase activity in purified rabies virions. Journal of General Virology 40:233–238
    [Google Scholar]
  20. Fukumi H., Nishikawa F., Sugiyama T., Yamaguchi Y., Nanba J., Matsuura T., Oikawa R. 1959; An epidemic due to HA2 virus in an elementary school in Tokyo. Japanese Journal of Medical Science and Biology 12:307–317
    [Google Scholar]
  21. Gaboriaud C., Bissery V., Benchetrit T., Mornon J. M. 1987; Hydrophobic cluster analysis: an efficient new way to compare and analyse amino acids sequences. FEBS tetters 224:149–155
    [Google Scholar]
  22. Galinski M. S., Mink M. A., Pons M. W. 1988; Molecular cloning and sequence analysis of the human parainfluenza virus gene encoding the L protein. Virology 165:499–510
    [Google Scholar]
  23. Gorbalenya A. E., Blinov V. M., Koonin E. V. 1985; Prediction of nucleotide-binding properties of virus specific proteins from their primary structure. Molekularna Genetika 2:30–36
    [Google Scholar]
  24. Gribskov M., Mclachlan A. D., Eisenberg D. 1987; Profile analysis: detection of distantly related proteins. Proceedings of the National Academy of Sciences U.S.A: 844355–4358
    [Google Scholar]
  25. Gribskov M., Homyak M., Edenfield J., Eisenberg D. 1988; Profile scanning for three-dimensional structural patterns in protein sequences. CABIOS 4:61–66
    [Google Scholar]
  26. Guilley H., Carrington J. C., Balazs E., Jonard G., Richards K., Morris T. J. 1985; Nucleotide sequence and genome organization of carnation mottle virus RNA. Nucleic Acids Research 13:6663–6677
    [Google Scholar]
  27. Hammond D. C., Lesnaw J. A. 1987a; The fate of undermethylated mRNA cap structure of vesicular stomatitis virus (New Jersey) during in vitro transcription. Virology 159:229–236
    [Google Scholar]
  28. Hammond D. C., Lesnaw J. A. 1987b; Functional analysis of hypomethylated variants of the New Jersey serotype of vesicular stomatitis virus. Virology 160:330–335
    [Google Scholar]
  29. Hattori M., Kuhara S., Takenaka O., Sakaki Y. 1986; LI family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein. Nature; London: 321625–628
    [Google Scholar]
  30. Hercyk N., Horikami S. M., Moyer S. A. 1988; The vesicular stomatitis virus L protein possesses the mRNA methyltransferase activities. Virology 163:222–225
    [Google Scholar]
  31. Hodgman T. C. 1986; The elucidation of protein function from its amino-acid sequence. CABIOS 2:181–188
    [Google Scholar]
  32. Hunt D. M., Smith E. F., Buckley D. W. 1984; Aberrant polyadenylation by a vesicular stomatitis virus mutant is due to an altered L protein. Journal of Virology 52:515–521
    [Google Scholar]
  33. Hunt D. M., Mehta R., Hutchinson K. L. 1988; The L protein of vesicular stomatitis virus modulates the response of the polyadenylic acid polymerase to 5-adenosylhomocysteine. Journal of General Virology 69:2555–2561
    [Google Scholar]
  34. Johnson M. S., McClure M. A., Feng D. F., Gray J., Doolittle R. F. 1986; Computer analysis of retroviralpol genes: assignment of enzymatic functions to specific sequences and homologies with nonviral enzymes. Proceedings of the National Academy of Sciences U.S.A.: 837648–7652
    [Google Scholar]
  35. Kamer G., Argos P. 1984; Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research 12:7269–7282
    [Google Scholar]
  36. Kamps M. P., Taylor S. S., Shefton B. M. 1984; Direct evidence that oncogenic tyrosine kinase and cyclic AMP-dependent protein kinase have homologous ATP-binding sites. Nature; London: 310589–592
    [Google Scholar]
  37. Kemdirim S., Palefsky J., Briedis D. J. 1986; Influenza B virus PB1 protein: nucleotide sequence of the genome RNA segment predicts a high degree of structural homology with the corresponding influenza A virus polymerase protein. Virology 152:126–135
    [Google Scholar]
  38. Kurath G., Ahern K. G., Pearson G. D., Leong J. C. 1985; Molecular cloning of the six mRNA species of infectious hematopoietic necrosis virus, a fish rhabdovirus, and gene order determination by R-loop mapping. Journal of Virology 53:469–476
    [Google Scholar]
  39. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Sciences 227:1435–1441
    [Google Scholar]
  40. Massey D. M., Lenard J. 1987; Inactivation of the RNA polymerase of vesicular stomatitis virus by N-ethylmaleimide and protection by nucleoside triphosphate. Journal of Biological Chemistry 262:8734–8737
    [Google Scholar]
  41. Matthews R. E. F. 1979; Classification and nomenclature of viruses. Intervirology 12:129–296
    [Google Scholar]
  42. Möller W., Amons R. 1985; Phosphate-binding sequences in nucleotide-binding proteins. FEBS tetters 186:1–7
    [Google Scholar]
  43. Ongrádi J., Cunningham C., Szilágyi J. F. 1985; The role of polypeptides L and NS in the transcription process of vesicular stomatitis virus New Jersey using the temperature-sensitive mutant tsEl. Journal of General Virology 66:1011–1023
    [Google Scholar]
  44. Parker J. C., Tennant R. W., Ward T. G., Rowe W. P. 1964; Enzootic Sendai virus infections in mouse breeder colonies within the United States. Science 146:936–938
    [Google Scholar]
  45. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO Journal 8:3867–3874
    [Google Scholar]
  46. Racaniello V. R., Baltimore D. 1981; Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proceedings of the National Academy of Sciences U.S.A.: 784887–4891
    [Google Scholar]
  47. Saigo K., Kugimiya W., Matsuo Y., Inouye S., Yoshioka K., Yuki S. 1984; Identification of the coding sequences for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature; London: 312659–661
    [Google Scholar]
  48. Sánchez A., De B. P., Banerjee A. K. 1985; In vitro phosphorylation of NS protein by the L protein of vesicular stomatitis virus. Journal of General Virology 66:1025–1036
    [Google Scholar]
  49. Schubert M., Harmison G. G., Meier E. 1984; Primary structure of the vesicular stomatitis virus polymerase (L) gene: evidence for a high frequency of mutations. Journal of Virology 51:505–514
    [Google Scholar]
  50. Schwartz D. E., Tizard R., Gilbert W. 1983; Nucleotide sequence of Rous sarcoma virus. Cell 32:853–869
    [Google Scholar]
  51. Shioda T., Iwasaki K., Shibuta H. 1986; Determination of the complete nucleotide sequence of the Sendai virus genome RNA and the predicted amino acid sequences of the F, HN and L proteins. Nucleic Acids Research 14:1545–1563
    [Google Scholar]
  52. Strauss E. G., Rice C. M., Strauss J. H. 1983; Sequence coding for the alphavirus nonstructural proteins is interrupted by an opal termination codon. Proceedings of the National Academy of Sciences U.S.A.: 805271–5275
    [Google Scholar]
  53. Tashiro M., Pritzer E., Khoshnan M. A., Yamakawa M., Kuroda K., Klenk H. D., Rott R., Seto J. T. 1988; Characterization of a pantropic variant of Sendai virus derived from a host range mutant. Virology 165:577–583
    [Google Scholar]
  54. Testa D., Banerjee A. K. 1977; Two methyltransferase activities in the purified virions of vesicular stomatitis virus. Journal of Virology 24:786–793
    [Google Scholar]
  55. Thomas S. M., Lamb R. A., Paterson R. G. 1988; Two mRNAs that differ by two nontemplated nucleotides encode the amino coterminal proteins P and V of the paramyxovirus SV5. Cell 54:891–902
    [Google Scholar]
  56. Toh H., Kikuno R., Hayashida H., Miyata T., Kugimiya W., Inouye S., Yuki S., Saigo K. 1985; Close structural resemblance between putative polymerases of a Drosophila transposable genetic element 17.6 and pol gene product of Moloney murine leukaemia virus. EMBO Journal 4:1267–1272
    [Google Scholar]
  57. Tordo N., Poch O. 1988; Structure of the rabies virus. In Rabies. Developments in Veterinary Virology pp 25–45 Campbell J. B., Charlton K. M. Edited by Boston: Kluwer Academic Publishers;
    [Google Scholar]
  58. Tordo N., Poch O., Ermine A., Keith G., Rougeon F. 1986; Walking along the rabies genome: is the large G-L intergenic region a remnant gene?. Proceedings of the National Academy of Sciences U.S.A.: 833914–3918
    [Google Scholar]
  59. Tordo N., Poch O., Ermine A., Keith G., Rougeon F. 1988; Completion of the rabies virus genome sequence determination: highly conserved domains among the L (polymerases) proteins of unsegmented negative-strand RNA viruses. Virology 165:565–576
    [Google Scholar]
  60. Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. 1985; Nucleotide sequence of the AIDS virus, LAV. Cell 40:9–17
    [Google Scholar]
  61. Wilbur W. J., Lipman D. J. 1983; Rapid similarity searches of nucleic acid and protein data banks. Proceedings of the National Academy of Sciences U.S.A.: 80726–730
    [Google Scholar]
  62. Yusoff K., Millar N. S., Chambers P., Emmerson P. T. 1987; Nucleotide sequence analysis of the L gene of Newcastle disease virus: homologies with Sendai and vesicular stomatitis viruses. Nucleic Acids Research 15:3961–3976
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-5-1153
Loading
/content/journal/jgv/10.1099/0022-1317-71-5-1153
Loading

Data & Media loading...

Most cited Most Cited RSS feed