Nucleotide Sequence of the Gene Encoding the Spike Glycoprotein of Human Coronavirus HCV 229E Free

Abstract

The gene encoding the spike glycoprotein of the human coronavirus HCV 229E has been cloned and sequenced. This analysis predicts an S polypeptide of 1173 amino acids with an of 128600. The polypeptide has 30 potential -glycosylation sites. A number of structural features typical of coronavirus S proteins can be recognized, including a signal sequence, a membrane anchor, heptad repeat structures and a carboxy-terminal cysteine cluster. A detailed, computer-aided comparison with the S proteins of infectious bronchitis virus, feline infectious peritonitis virus, transmissible gastroenteritis virus and murine hepatitis virus, strain JHM is presented. We have also done a Northern blot analysis of viral RNAs in HCV 229E- infected cells using synthetic oligonucleotides. On the basis of this analysis, and by analogy to the replication strategy of other coronaviruses, we are able to propose a model for the organization and expression of the HCV 229E genome.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-5-1065
1990-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/5/JV0710051065.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-5-1065&mimeType=html&fmt=ahah

References

  1. Baric R. S., Stohlman S. A., Razavi M. K., Lai M. M. C. 1985; Characterization of leader-related small RNAs in coronavirus- infected cells: further evidence for leader-primed mechanism of transcription. Virus Research 3:19–33
    [Google Scholar]
  2. Binns M. M., Boursnell M. E. G., Cavanagh D., Pappin D. J. C., Brown T. D. K. 1985; Cloning and sequencing of the gene encoding the spike protein of the corona virus IBV. Journal of General Virology 66:719–726
    [Google Scholar]
  3. Boursnell M. E. G., Brown T. D. K., Foulds I. J., Green P. F., Tomley F. M., Binns M. M. 1987; Completion of the sequence of the genome of the coronavirus avian infectious bronchitis virus. Journal of General Virology 68:57–77
    [Google Scholar]
  4. Budzilowicz C. J., Weiss S. R. 1987; In vitrosynthesis of two polypeptides from a non-structural gene of coronavirus mouse hepatitis virus strain A59. Virology 157:509–515
    [Google Scholar]
  5. Cavanagh D. 1983; Coronavirus IBV: structural characterization of the spike protein. Journal of General Virology 64:2577–2583
    [Google Scholar]
  6. De Groot R. J., Luytjes W., Horzinek M. C., Van Der Zeijst B. A. M., Spaan W. J. M., Lenstra J. A. 1987a; Evidence for a coiled-coil structure in the spike proteins of coronaviruses. Journal of Molecular Biology 196:963–966
    [Google Scholar]
  7. De Groot R. J., Maduro J., Lenstra J. A., Fiorzinek M. C., Van Der Zeijst B. A. M., Spaan W. J. M. 1987b; cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. Journal of General Virology 68:2639–2646
    [Google Scholar]
  8. De Groot R. J., Van Leen R. W., Dalderup M. J. M., Vennema H., Horzinek M. C., Spaan W. J. M. 1989; Stably expressed FIPV peplomer protein induces cell fusion and elicits neutralizing antibodies in mice. Virology 171:493–502
    [Google Scholar]
  9. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  10. Garwes D. J., Reynolds D. J. 1981; The polypeptide structure of canine coronavirus and its relationship to porcine transmissible gastroenteritis virus. Journal of General Virology 52:153–157
    [Google Scholar]
  11. Gribskov M., Burgess R. R. 1986; Sigma factors from E. coli, B. subtilisphage SP01 and phage T4 are homologous proteins. Nucleic Acids Research 14:6745–6763
    [Google Scholar]
  12. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  13. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  14. Hierholzer J. C. 1976; Purification and biophysical properties of human coronavirus 229E. Virology 75:155–165
    [Google Scholar]
  15. Hierholzer J. C., Tannock G. A. 1988; Coronaviridae:The coronaviruses. In Viral, Rickettsial and Chlamydial Diseases Laboratory diagnosis of infectious diseases.Principles and practice 2 pp 451–483 Lennette E. H., Halonen F., Murphy F. A. Edited by New York: Springer-Verlag;
    [Google Scholar]
  16. Hogue B. G., Brian D. A. 1986; Structural proteins of human respiratory coronavirus OC43. Virus Research 5:131–144
    [Google Scholar]
  17. Horzinek M. C., Lutz H., Pedersen N. C. 1982; Antigenic relationships amongst homologous structural polyeptides of porcine, feline and canine coronaviruses. Infection and Immunity 37:1148–1155
    [Google Scholar]
  18. Isaacs D., Flowers D., Clarke J. R., Valman B., Mac-Naughton M. R. 1983; Epidemiology of coronavirus respiratory infections. Archives of Disease in Childhood 58:500–503
    [Google Scholar]
  19. Jacobs L., De Groot R., Van Der Zeijst B. A. M., Horzinek M. C., Spaan W. J. M. 1987; The nucleotide sequence of the peplomer gene of porcine transmissible gastroenteritis virus (TGEV): comparison with the sequence of the peplomer protein of feline infectious peritonitis virus. Virus Research 8:363–371
    [Google Scholar]
  20. Kamahora T., Soe L. H., Lai M. M. C. 1989; Sequence analysis of nucleocapsid gene and leader RNA of human coronavirus OC43. Virus Research 12:1–9
    [Google Scholar]
  21. Kemp M. C., Hierholzer J. C., Harrison A., Burks J. S. 1984; Characterization of viral proteins synthesized in 229E-infected cells and effect(s) of inhibition of glycosylation and glycoprotein transport. In Molecular Biology and Pathogenesis of Coronaviruses, Advances in Experimental Medicine and Biology 173 pp 65–77 Rottier P. J. M., Van der Zeijst B. A. M., Spaan W. J. M., Horzinek M. C. Edited by New York & London: Plenum Press;
    [Google Scholar]
  22. Kozak M. 1983; Comparison of initiation of protein synthesis in procaryotes, eucaryotes and organelles. Microbiological Reviews 47:1–45
    [Google Scholar]
  23. Lai M. M. C., Makino S., Soe L. H., Shieh C.-K., Keck J. G., Fleming J. O. 1987; Coronavirus: a jumping RNA transcription. Cold Spring Harbor Symposia on Quantitative Biology 52:359–365
    [Google Scholar]
  24. McIntosh K., Chad R. K., Krause H. E., Wasil R., Mosega H. E., Mufson M. A. 1974; Coronavirus infection in acute lower respiratory tract disease of infants. Journal of Infectious Diseases 130:502–507
    [Google Scholar]
  25. Macnaughton M. R. 1981; Structural and antigenic relationship between human, murine and avian coronaviruses. In Biochemistry and Biology of Coronaviruses, Advances in Experimental Medicine and Biology 142 pp 19–29 Ter Meulen V., Siddell S., Wege H. Edited by New York & London: Plenum Press;
    [Google Scholar]
  26. Macnaughton M. A., Madge M. H. 1978; The genome of human coronavirus strain 229E. Journal of General Virology 39:497–504
    [Google Scholar]
  27. Macnaughton M. R., Madge M. H. 1978; The genome of human coronavirus strain 229E. Journal of General Virology 39:497–504 infected with human coronavirus 229E group viruses. Infection and Immunity, 31, 845-849
    [Google Scholar]
  28. Makino S., Stohlman S. A., Lai M. M. C. 1986; Leader sequences of murine coronavirus RNA can be freely reassorted: evidence for the role of free leader RNA in transcription. Proceedings of the National Academy of Sciences U.S.A.: 834204–4208
    [Google Scholar]
  29. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  30. Messing J., Vieira J. 1982; A new pairof M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  31. Myint S., Siddell S., Tyrrell D. 1989; The detection of human coronavirus 229E in nasal washings using RNA:RNA hybridization. Journal of Medical Virology 29:70–73
    [Google Scholar]
  32. Parker M. D., Cox G. J., Deregt D., Fitzpatrick D. R., Babiuk L. A. 1989; Cloning and in vitroexpression of the gene for the E3 haemagglutinin glycoprotein of bovine coronavirus. Journal of General Virology 70:155–164
    [Google Scholar]
  33. Pedersen N. C., Ward J., Mengeling W. L. 1978; Antigenic relationship of the feline infectious peritonitis virus to coronaviruses of other species. Archives of Virology 58:45–53
    [Google Scholar]
  34. Phillpotts R. J. 1983; Clones of MRC-C cells may be superior to the parent line for the culture of 229E-like strains of human respiratory coronavirus. Journal of Virological Methods 6:267–269
    [Google Scholar]
  35. Raabe T., Siddell S. G. 1989a; Nucleotide sequence encoding the membrane protein of human coronavirus 229E. Archives of Virology 107:323–328
    [Google Scholar]
  36. Raabe T., Siddell S. G. 1989b; Nucleotide sequence of the human coronavirus HCV 229E mRNA 4 and mRNA 5 unique regions. Nucleic Acids Research 17:6387
    [Google Scholar]
  37. Rasschaert D., Laude H. 1987; The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1883–1890
    [Google Scholar]
  38. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences U.S.A.: 745463–5467
    [Google Scholar]
  39. Schmidt I., Skinner M., Siddell S. G. 1987; Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. Journal of General Virology 68:47–56
    [Google Scholar]
  40. Schmidt O. W., Kenny G. E. 1982; Polypeptides and functions of antigens from human coronaviruses 229E and OC43. Infection and Immunity 35:515–522
    [Google Scholar]
  41. Schreiber S. S., Kamahora T., Lai M. M. C. 1989; Sequence analysis of the nucleocapsid protein gene of human coronavirus 229E. Virology 169:142–151
    [Google Scholar]
  42. Shieh C.-K., Soe L. H., Makino S., Chang M.-F., Stohlman S. A., Lai M. M. C. 1987; The 5ʹ prime end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader- primed transcription. Virology 156:321–330
    [Google Scholar]
  43. Shieh C.-K., Soe L. H., Makino S., Chang M.-F., Stohlman S. A., Lai M. M. C. 1987; The 5ʹ end sequence of the murine coronavirus genome: implications for multiple fusion sites in leader- primed transcription. Virology 156:321–330
    [Google Scholar]
  44. Siddell S. 1983; Coronavirus JHM: coding assignments of subgenomic mRNAs. Journal of General Virology 64:113–125
    [Google Scholar]
  45. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  46. Staden R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  47. Sturman L., Holmes K. 1985; The novel glycoproteins of coronaviruses. Trends in Biochemical Sciences 10:17–20
    [Google Scholar]
  48. Sturman L. S., Ricard C. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of Virology 56:904–911
    [Google Scholar]
  49. Van Berlo M. F., Van Den Brink W. J., Horzinek M. C., Van Der Zeijst B. A. M. 1987; Fatty acid acylation of viral proteins in murine hepatitis virus-infected cells. Archives of Virology 95:123–128
    [Google Scholar]
  50. Vlasak R., Luytjes W., Leider J., Spaan W., Palese P. 1988; The E3 protein of bovine coronavirus is a receptor destroying enzyme with acetylesterase activity. Journal of Virology 62:4686–4690
    [Google Scholar]
  51. Von Heijne G. 1984; A new method for predicting signal sequence cleavage sites. Nucleic Acids Research 14:4683–4690
    [Google Scholar]
  52. Weiss S. R., Leibowitz J. L. 1981; Comparison of the RNAs of murine and human coronaviruses. In Biochemistry and Biology of Coronaviruses, Advances in Experimental Medicine and Biology 142 pp 43–69 Ter Meulen V., Siddell S., Wege H. Edited by New York & London: Plenum Press;
    [Google Scholar]
  53. Woods D. 1984; Oligonucleotide screening of cDNA libraries. Focus 6:1–3
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-5-1065
Loading
/content/journal/jgv/10.1099/0022-1317-71-5-1065
Loading

Data & Media loading...

Most cited Most Cited RSS feed