Skip to content
1887

Abstract

The human papillomavirus type 16 (HPV-16) E7 gene cooperates with an activated oncogene to transform primary rodent cells and is important in the immortalization of cervical keratinocytes. We have generated a series of point mutations within the E7 gene and show that mutation of residues serine 31 and serine 71 affect the phosphorylation of the E7 protein, but do not alter its ability to cooperate with . Further mutations which alter cysteine residues in a -Cys-X-X-Cys- motif decrease transformation markedly, although they do not abolish it entirely. All the mutations generated displayed a decreased ability to transactivate the adenovirus E2 promoter. These results show that neither phosphorylation of E7 nor its ability to transactivate are required for transformation by E7.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-4-965
1990-04-01
2025-01-21
Loading full text...

Full text loading...

References

  1. Androphy E. J., Hubbert N. L., Schiller J. T., Lowy D. R. 1987; Identification of HPV-16 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. EMBO Journal 6:989–992
    [Google Scholar]
  2. Banks L., Spence P., Androphy E., Hubbert N., Matlashewski G., Murray A., Crawford L. 1987; Identification of human papillomavirus type 18 E6 polypeptide in cells derived from human cervical carcinomas. Journal of General Virology 68:1351–1359
    [Google Scholar]
  3. Crook T., Storey A., Almond N., Osborn K., Crawford L. 1988; Human papillomavirus type 16 cooperates with activated ras and fos oncogenes in the hormone-dependent transformation of primary mouse cells. Proceedings of the National Academy of Sciences U.S.A.: 858820–8824
    [Google Scholar]
  4. Dürst M., Gissmann L., Ikenberg H., Zur Hausen H. 1983; A papillomavirus DNA from a cervical carcinoma and its prevalence in cancer biopsy samples from different geographical regions. Proceedings of the National Academy of Sciences U.S.A.: 803812–3815
    [Google Scholar]
  5. Dyson N., Howley P. M., Munger K., Harlow E. 1989; The human papillomavirus 16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934–937
    [Google Scholar]
  6. Edmonds C., Vousden K. 1989; A point mutational analysis of human papillomavirus type 16 E7 protein. Journal of Virology 63:3516–3518
    [Google Scholar]
  7. Feldman L. T., Imperiale M. J., Nevins J. R. 1982; Activation of early adenovirus transcription by the herpes immediate early gene: evidence for a common cellular control factor. Proceedings of the National Academy of Sciences U.S.A.: 794952–4956
    [Google Scholar]
  8. Ferguson B., Kripple B., Andrisani O., Jones N., Westphal H., Rosenberg M. 1985; Ela 13S and 12S mRNA products made in Escherichia coli both function as nucleus localized transcription activators but do not directly bind DNA. Molecular and Cellular Biology 5:2653–2661
    [Google Scholar]
  9. Gissmann L., Wolnik L., Ikenberg H., Koldovsky V., Schnurch H., Zur Hausen H. 1983; Human papillomavirus types 6 and 11 DNA sequences in genital and laryngeal papillomas and in some cervical cancers. Proceedings of the National Academy of Sciences U.S.A.: 80560–563
    [Google Scholar]
  10. Glenn G. M., Ricciardi R. P. 1985; Adenovirus 5 early region 1A host range mutants hr 3, hr 4 and hr 5 contain point mutations which generate single amino acid substitutions. Journal of Virology 56:6674
    [Google Scholar]
  11. Hall C. V., Jacob P. E., Ringold G. M., Lee F. 1983; Expression and regulation of Escherichia coli lac Z gene fusions in mammalian cells. Journal of Molecular and Applied Genetics 2:101–109
    [Google Scholar]
  12. Hanas J. S., Hazuka D. J., Bogenhagen D. F., Wu F.Y.-H., Wu C.-W. 1983; Xenopus transcription factor A requires zinc for binding to the 5S RNA gene. Journal of Biological Chemistry 258:14120–14125
    [Google Scholar]
  13. Lillie J. W., Green M., Green M. R. 1986; An adenovirus Ela protein region required for transformation and transcriptional repression. Cell 46:1043–1051
    [Google Scholar]
  14. Miller J., McLachlan A. D., Klug A. 1985; Repetitive zincbinding domain in the protein transcription factor TFIIIA from Xenopus oocytes. EMBO Journal 4:1609–1614
    [Google Scholar]
  15. Miller J. H. 1972 Experiments in Molecular Genetics New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Murthy S. C. S., Bhat G. P., Thimmappaya B. 1985; Adenovirus Ela early promoter : transcriptional control elements and induction by the viral pre-early Ela gene which appears to be sequence independent. Proceedings of the National Academy of Sciences U.S.A.: 822230–2234
    [Google Scholar]
  17. Oltersdorf T., Seedorf K., Röwekamp W., Gissmann L. 1987; Identification of human papillomavirus type 16 E7 protein by monoclonal antibodies. Journal of General Virology 68:2933–2938
    [Google Scholar]
  18. Phelps W. C., Yee C. L., Munger K., Howley P. M. 1988; The human papillomavirus type 16 E7 gene encodes transactivation and transformation functions similar to those of adenovirus Ela. Cell 53:539–547
    [Google Scholar]
  19. Schneider-Gadicke A., Schwarz E. 1986; Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO Journal 5:2285–2292
    [Google Scholar]
  20. Schwarz E., Dürst M., Demankowski C., Lattermann O., Zech R., Wolfsperger E., Suhai S., Zur Hausen H. 1983; DNA sequence and genome organization of genital human papillomavirus type 6b. EMBO Journal 2:2341–2348
    [Google Scholar]
  21. Shih C., Weinberg R. A. 1982; Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29:161–169
    [Google Scholar]
  22. Smotkin D., Wettstein F. O. 1986; Transcription of human papillomavirus type 16 early genes in a cervical cancer and cancer- derived cell line and identification of the E7 protein. Proceedings of the National Academy of Sciences U.S.A.: 834680–4684
    [Google Scholar]
  23. Smotkin D., Wettstein F. O. 1987; The major human papillomavirus protein in cervical cancers is a cytoplasmic phospho- protein. Journal of Virology 61:1686–1698
    [Google Scholar]
  24. Spalholz B. A., Yang Y.-C., Howley P. M. 1985; Transactivation of a bovine papillomavirus transcriptional regulatory element by the E2 gene product. Cell 42:183–191
    [Google Scholar]
  25. Storey A., Pim D., Murray A., Osborn K., Banks L., Crawford L. 1988; Comparison of the in vitro transforming activities of human papillomavirus types. EMBO Journal 7:1815–1820
    [Google Scholar]
  26. Storey A., Osborn K., Crawford L. 1990; Transformation by human papillomavirus types 6 and 11. Journal of General Virology 71:165–171
    [Google Scholar]
  27. Vousden K., Jat P. S. 1989; Functional similarity between HPV16 E7, SV40 large T and adenovirus Ela proteins. Oncogene 4:153–158
    [Google Scholar]
  28. Wigler M., Pellicer A., Sllverstein S., Axel R., Urlaub G., Chasin L. 1979; DNA-mediated transfer of the adenine phos- phoribosyl transferase locus into mammalian cells. Proceedings of the National Academy of Sciences U.S.A: 761373–1376
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-71-4-965
Loading
/content/journal/jgv/10.1099/0022-1317-71-4-965
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error