1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-4-751
1990-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/4/JV0710040751.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-4-751&mimeType=html&fmt=ahah

References

  1. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. 1989; The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature; London: 337709–716
    [Google Scholar]
  2. Albritton L. M., Tseng L., Scadden D., Cunningham J. M. 1989; A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell 57:659–666
    [Google Scholar]
  3. Arthos J., Deen K. C., Chaikin M. A., Fornwald J. A., Sathe G., Sattentau Q. J., Clapham P. R., Weiss R. A., Mcdougal J. S., Pietropaolo C., Axel R., Truneh A., Maddon P. J., Sweet R. W. 1989; Identification of the residues in human CD4 critical for the binding of HIV. Cell 57:469–481
    [Google Scholar]
  4. Attwood W. J., Norkin L. C. 1989; Class I major histocompatibility proteins as cell surface receptors for simian virus 40. Journal of Virology 63:4474–4477
    [Google Scholar]
  5. Bassel-Duby R., Jayasuriya A., Chatterjee D., Sonenberg N., Maizel J. V.Jr Fields B. N. 1985; Sequence of a reovirushaemagglutinin predicts a coiled-coil structure. Nature; London: 315421–423
    [Google Scholar]
  6. Beck S., Barrell B. G. 1988; Human cytomegalovirus encodes a glycoprotein homologous to MHC class-I antigens. Nature; London: 331269–272
    [Google Scholar]
  7. Berger E. A., Fuerst T. R., Moss B. 1988; A soluble recombinant polypeptide comprising the amino-terminal half of the extracellular region of the CD4 molecule contains an active binding site for human immunodeficiency virus. Proceedings of the National Academy of Sciences, U.S.A 85:2357–2361
    [Google Scholar]
  8. Bittle J. L., Houghten R. A., Alexander H., Shinnick T. M., Sutcliffe J. G., Lerner R. A., Rowlands D. J., Brown F. 1982; Protection against foot-and-mouth disease by immunization with a chemically synthesized peptide predicted from the viral nucleotide sequence. Nature; London: 29830–33
    [Google Scholar]
  9. Blomquist M. C., Hunt L. T., Barker W. C. 1984; Vaccinia virus 19-kilodalton protein: relationship to several mammalian proteins, including two growth factors. Proceedings of the National Academy of Sciences, U.S.A 81:7363–7367
    [Google Scholar]
  10. Bracci L., Antoni G., Cusi M. G., Lozzi L., Niccolai N., Petreni S., Rustici M., Santucci A., Soldani P., Valensin P. E., Neri P. 1988; Antipeptide monoclonal antibodies inhibit the binding of rabies virus glycoprotein and alpha-bungarotoxin to the nicotinic acetylcholine receptor. Molecular Immunology 25:881–888
    [Google Scholar]
  11. Brenneman D. E., Westbrook G. L., Fitzgerald S. P., Ennist D. L., Elkins K. L., Ruff M., Pert C. B., Goodwin F. K. 1988; Neuronal cell killing by the envelope protein of HIV and its prevention by vasoactive intestinal peptide. Nature; London: 335639–642
    [Google Scholar]
  12. Bridge T. P., Heseltine P. N. R., Parker E. S., Eaton E., Ingraham L. J., Gill M., Ruff M. R., Pert C. B. 1989; Improvement in AIDS patients on peptide T. Lancet ii:226–227
    [Google Scholar]
  13. Brown J. P., Twardzik D. R., Marquardt H., Todaro G. J. 1985; Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor. Nature; London: 313491–492
    [Google Scholar]
  14. Burness A. T. H., Pardoe I. U. 1981; Effect of enzymes on the attachment of influenza and encephalomyocarditis viruses to erythrocytes. Journal of General Virology 55:275–288
    [Google Scholar]
  15. Capon D. J., Charnow S. M., Mordenti J., Marsters S. A., Gregory T., Mitsuya H., Byrn R. A., Lucas C., Wurm F. M., Groopman J. E., Broder S., Smith D. H. 1989; Designing CD4 immunoadhesins for AIDS therapy. Nature; London: 337525–531
    [Google Scholar]
  16. Cardosa M. J., Gordon S., Hirsch S., Springer T. A., Porterfield J. S. 1986; Interaction of West Nile virus with primary murine macrophages: role of cell activation and receptors for antibody and complement. Journal of Virology 57:952–959
    [Google Scholar]
  17. Carroll S. M., Higa H. H., Paulson J. C. 1981; Different cell-surface receptor determinants of antigenically similar influenza virus hemagglutinins. Journal of Biological Chemistry 256:8357–8363
    [Google Scholar]
  18. Chanh T. C., Dreesman G. R., Kennedy R. C. 1987; Monoclonal anti-idiotypic antibody mimics the CD4 receptor and binds human immunodeficiency virus. Proceedings of the National Academy of Sciences, U.S.A 84:3891–3895
    [Google Scholar]
  19. Chao B. H., Costopoulos D. S., Curie T., Bertonis J. M., Chisholm P., Williams C., Schooley R. T., Rosa J. J., Fisher R. A., Maraganore J. M. 1989; A 113-amino acid fragment of CD4 produced in Escherichia coli blocks human immunodeficiency virus-induced cell fusion. Journal of Biological Chemistry 264:5812–5817
    [Google Scholar]
  20. Chatterjee D., Maizel J. V.Jr 1984; Homology of adenoviral E3 glycoprotein with HLA-DR heavy chain. Proceedings of the National Academy of Sciences, U.S.A 81:6039–6043
    [Google Scholar]
  21. Chaudhary V. K., Mizukami T., Fuerst T. R., Fitzgerald D. J., Moss B., Pastan I., Berger E. A. 1988; Selective killing of HIV-infected cells by recombinant human CD4-Pseudomonas exotoxin hybrid protein. Nature; London: 335369–372
    [Google Scholar]
  22. Clapham P. R., Weber J. N., Whitby D., Mcintosh K., Dalgleish A. G., Maddon P. J., Deen K. C., Sweet R. W., Weiss R. A. 1989; Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells. Nature; London: 337368–370
    [Google Scholar]
  23. Clarke M. F., Gelmann E. P., Reitz M. S.Jr 1983; Homology of human T-cell leukaemia virus envelope gene with class I HLA gene. Nature; London: 30560–62
    [Google Scholar]
  24. Clayton L. K., Hussey R. E., Steinbrich R., Ramachandran H., Husain Y., Reinherz E. L. 1988; Substitution of murine for human CD4 residues identifies amino acids critical for HIV-gpl20 binding. Nature; London: 335363–366
    [Google Scholar]
  25. Clayton L. K., Sieh M., Pious D. A., Reinherz E. L. 1989; Identification of human CD4 residues affecting class II MHC versus HIV-1 gpl20 binding. Nature; London: 339548–551
    [Google Scholar]
  26. Co M. S., Gaulton G. N., Tominaga A., Homcy C. J., Fields B. N., Greene M. I. 1985; Structural similarities between the mammalian β-adrenergic and reovirus type 3 receptors. Proceedings of the National Academy of Sciences, U.S.A 82:5315–5318
    [Google Scholar]
  27. Colman P. M., Varghese J. N., Laver W. G. 1983; Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature; London: 30341–44
    [Google Scholar]
  28. Colonno R. J., Callahan P. L., Long W. J. 1986; Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. Journal of Virology 57:7–12
    [Google Scholar]
  29. Colonno R. J., Condra J. H., Mizutani S., Callahan P. L., Davies M.-E., Murcko M. A. 1988; Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proceedings of the National Academy of Sciences, U.S.A 85:5449–5453
    [Google Scholar]
  30. Cordonnier A., Montagnier L., Emerman M. 1989a; Single amino-acid changes in HIV envelope affect viral tropism and receptor binding. Nature; London: 340571–574
    [Google Scholar]
  31. Cordonnier A., Riviere Y., Montagnier L., Emerman M. 1989b; Effects of mutations in hyperconserved regions of the extracellular glycoprotein of human immunodeficiency virus type 1 on receptor binding. Journal of Virology 63:4464–4468
    [Google Scholar]
  32. Crowell R. L., Landau B. L. 1979; Receptors as determinants of cellular tropism in picomavirus infections. In Receptors and Human Diseases pp. 1–33 Beam A. G., Choppin P. W. Edited by New York: Macy Foundation;
    [Google Scholar]
  33. Dales S. 1973; Early events in cell-animal virus interactions. Bacteriological Reviews 37:103–135
    [Google Scholar]
  34. Dalgleish A. G., Beverley P. C. L., Clapham P. R., Crawford D. H., Greaves M. F., Weiss R. A. 1984; The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature; London: 312763–767
    [Google Scholar]
  35. Damian R. T. 1987; Molecular mimicry revisited. Parasitology Today 3:263–266
    [Google Scholar]
  36. Dayhoff M. O., Barker W. C., Hunt L. T. 1983; Establishing homologies in protein sequences. Methods in Enzymology 91:524–545
    [Google Scholar]
  37. Deen K. C., Mcdougal J. S., Inacker R., Folena-Wasserman G., Arthos J., Rosenberg J., Maddon P. J., Axel R., Sweet R. W. 1988; A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature; London: 33182–84
    [Google Scholar]
  38. Diamond D. C., Sleckman B. P., Gregory T., Lasky L. A., Greenstein J. L., Burakoff S. J. 1988; Inhibition of CD4+ T cell function by the HIV envelope protein, gp120. Journal of Immunology 141:3715–3717
    [Google Scholar]
  39. Dimarchi R., Brooke G., Gale C., Cracknell V., Doel T., Mowat N. 1986; Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science 232:639–641
    [Google Scholar]
  40. Dimmock N. J. 1982; Initial stages in infection with animal viruses. Journal of General Virology 59:1–22
    [Google Scholar]
  41. Donnelly-Roberts D. L., Lentz T. L. 1989; Synthetic peptides of neurotoxins and rabies virus glycoprotein behave as antagonists in a functional assay for the acetylcholine receptor. Peptide Research 2:221–226
    [Google Scholar]
  42. Dowbenko D., Nakamura G., Fennie C., Shimasaki C., Riddle L., Harris R., Gregory T., Lasky L. 1988; Epitope mapping of the human immunodeficiency virus type 1 gp120 with monoclonal antibodies. Journal of Virology 62:4703–4711
    [Google Scholar]
  43. Eisenlohr L. C., Gerhard W., Hackett C. J. 1987; Role of receptor-binding activity of the viral hemagglutinin molecule in the presentation of influenza virus antigens to helper T cells. Journal of Virology 61:1375–1383
    [Google Scholar]
  44. Eppstein D. A., Marsh Y. V., Schreiber A. B., Newman S. R., Todaro G. J., Nestor J. J.Jr 1985; Epidermal growth factor receptor occupancy inhibits vaccinia virus infection. Nature; London: 318663–665
    [Google Scholar]
  45. Fields A. P., Bednarik D. P., Hess A., May W. S. 1988; Human immunodeficiency virus induces phosphorylation of its cell surface receptor. Nature; London: 333278–280
    [Google Scholar]
  46. Fingeroth J. D., Weis J. J., Tedder T. F., Strominger J. L., Biro P. A., Fearon D. T. 1984; Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proceedings of the National Academy of Sciences, U.S.A 81:4510–4514
    [Google Scholar]
  47. Fisher R. A., Bertonis J. M., Meier W., Johnson V. A., Costopoulos D. S., Liu T., Tizard R., Walker B. D., Hirsch M. S., Schooley R. T., Flavell R. A. 1988; HIV infection is blocked in vitro by recombinant soluble CD4. Nature; London: 33176–78
    [Google Scholar]
  48. Fox G., Parry N. R., Barnett P. V., Mcginn B., Rowlands D. J., Brown F. 1989; The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). Journal of General Virology 70:625–637
    [Google Scholar]
  49. Fried H., Cahan L. D., Paulson J. C. 1981; Polyoma virus recognizes specific sialyloligosaccharide receptors on host cells. Virology 109:188–192
    [Google Scholar]
  50. Fukudome K., Yoshie O., Konno T. 1989; Comparison of human, simian, and bovine rotaviruses for requirement of sialic acid in hemagglutination and cell adsorption. Virology 172:196–205
    [Google Scholar]
  51. Fuller S. D., von Bonsdorff C.-H., Simons K. 1985; Cell surface influenza hemagglutinin can mediate infection by other animal viruses. EMBO Journal 4:2475–2485
    [Google Scholar]
  52. Funke I., Hahn A., Rieber E. P., Weiss E., Riethmuller G. 1987; The cellular receptor (CD4) of the human immunodeficiency virus is expressed on neurons and glial cells in human brain. Journal of Experimental Medicine 165:1230–1235
    [Google Scholar]
  53. Gartner S., Markovits P., Markovitz D. M., Kaplan M. H., Gallo R. C., Popovic M. 1986; The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219
    [Google Scholar]
  54. Gershoni J. M., Aronheim A. 1988; Molecular decoys: ligandbinding recombinant proteins protect mice from curarimimetic neurotoxins. Proceedings of the National Academy of Sciences, U.S.A 85:4087–4089
    [Google Scholar]
  55. Greve J. M., Davis G., Meyer A. M., Forte C. P., Yost S. C., Marlor C. W., Kamarck M.E., Mcclelland A. 1989; The major human rhinovirus receptor is ICAM-1. Cell 56:839–847
    [Google Scholar]
  56. Grundy J. E., Mckeating J. A., Ward P. J., Sanderson A. R., Griffiths P. D. 1987; β2 Microglobulin enhances the infectivity of cytomegalovirus and when bound to the virus enables class I HLA molecules to be used as a virus receptor. Journal of General Virology 68:793–803
    [Google Scholar]
  57. Guyader M., Emerman M., Sonigo P., Clavel F., Montagnier L., Alizon M. 1987; Genome organization and transactivation of the human immunodeficiency virus type 2. Nature; London: 326662–669
    [Google Scholar]
  58. Halstead S. B. 1988; Pathogenesis of dengue: challenges to molecular biology. Science 239:476–481
    [Google Scholar]
  59. Halstead S. B., O’Rourke. 1977; Antibody-enhanced dengue virus infection in primate leukocytes. Nature; London: 265739–741
    [Google Scholar]
  60. Harrison S. C. 1989; Finding the receptors. Nature; London: 338205–206
    [Google Scholar]
  61. Helenius A., Morein B., Fries E., Simons K., Robinson P., Schirrmacher V., Terhorst C., Strominger J. L. 1978; Human (HLA-A and HLA-B) and murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for Semliki Forest virus. Proceedings of the National Academy of Sciences, U.S.A 75:3846–3850
    [Google Scholar]
  62. Hogle J. M., Chow M., Filman D. J. 1985; Three-dimensional structure of poliovirus at 2·9 Å resolution. Science 229:1358–1365
    [Google Scholar]
  63. Holland J. J. 1961; Receptor affinities as major determinants of enterovirus tissue tropisms in humans. Virology 15:312–326
    [Google Scholar]
  64. Holmgren J., Svennerholm L., Elwing H., Fredman P., Strannegård Ö. 1980; Sendai virus receptor: proposed recognition structure based on binding to plastic-adsorbed gangliosides. Proceedings of the National Academy of Sciences, U.S.A 77:1947–1950
    [Google Scholar]
  65. Homsy J., Meyer M., Tateno M., Clarkson S., Levy J. A. 1989; The Fc and not CD4 receptor mediates antibody enhancement of HIV infection in human cells. Science 244:1357–1360
    [Google Scholar]
  66. Hoxie J. A., Haggarty B. S., Bonser S. E., Rackowski J. L., Shan H., Kanki P. J. 1988; Biological characterization of a simian immunodeficiency virus-like retrovirus (HTLV-IV): evidence for CD4-associated molecules required for infection. Journal of Virology 62:2557–2568
    [Google Scholar]
  67. Hussey R. E., Richardson N. E., Kowalski M., Brown N. R., Chang H.-C., Siliciano R. F., Dorfman T., Walker B., Sodroski J., Reinherz E. L. 1988; A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. Nature; London: 33178–81
    [Google Scholar]
  68. Ibegbu C. C., Kennedy M. S., Maddon P. J., Deen K. C., Hicks D., Sweet R. W., Mcdougal J. S. 1989; Structural features of CD4 required for binding to HIV. Journal of Immunology 142:2250–2256
    [Google Scholar]
  69. Inada T., Mims A. 1984; Mouse la antigens are receptors for lactate dehydrogenase virus. Nature; London: 30959–61
    [Google Scholar]
  70. Itoh Y., Takai E., Ohnuma H., Kitajima K., Tsuda F., Machida A., Mishiro S., Nakamura T., Miyakawa Y., Miyumi M. 1986; A synthetic peptide vaccine involving the product of the pre- S(2) region of hepatitis B virus DNA: protective efficacy in chimpanzees. Proceedings of the National Academy of Sciences, U.S.A 83:9174–9178
    [Google Scholar]
  71. Jameson B. A., Rao P. E., Kong L. I., Hahn B. H., Shaw G. M., Hood L. E., Kent S. B. H. 1988; Location and chemical synthesis of a binding site for HIV-1 on the CD4 protein. Science 240:1335–1339
    [Google Scholar]
  72. Kannagi M., Yetz J. M., Letvin N. L. 1985; In vitro growth characteristics of simian T-lymphotropic virus type III. Proceedings of the National Academy of Sciences, U.S.A 82:7053–7057
    [Google Scholar]
  73. Kauffman R. S., Noseworthy J. H., Nepom J. T., Finberg R., Fields B. N., Greene M. I. 1983; Cell receptors for the mammalian reovirus II. Monoclonal anti-idiotypic antibody blocks viral binding to cells. Journal of Immunology 131:2539–2541
    [Google Scholar]
  74. King C. S., Cooper J. A., Moss B., Twardzik D. R. 1986; Vaccinia virus growth factor stimulates tyrosine protein kinase activity of A431 cell epidermal growth factor receptors. Molecular and Cellular Biology 6:332–336
    [Google Scholar]
  75. Klatzmann D., Barré-Sinoussi F., Nugeyre M. T., Dauguet C., Vilmer E., Griselli C., Brun-Vezinet F., Rouzioux C., Gluckman J. C., Chermann J.-C., Montagnier L. 1984a; Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes. Science 225:59–63
    [Google Scholar]
  76. Klatzmann D., Champagne E., Chamaret S., Gruest J., Goetard D., Hercend T., Gluckman J.-C., Montagnier L. 1984b; T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature; London: 312767–768
    [Google Scholar]
  77. Kohtz D. S., Altman A., Kohtz J. D., Puszkin S. 1988; Immunological and structural homology between human T-cell leukemia virus type I envelope glycoprotein and a region of human interleukin-2 implicated in binding the β receptor. Journal of Virology 62:659–662
    [Google Scholar]
  78. Komai K., Kaplan M., Peeples M. E. 1988; The Vero cell receptor for the hepatitis B virus small S protein is a sialoglycoprotein. Virology 163:629–634
    [Google Scholar]
  79. Kornfeld H., Riedel N., Viglianti G. A., Hirsch V., Mullins J. I. 1987; Cloning of HTLV-4 and its relation to simian and human immunodeficiency viruses. Nature; London: 326610–613
    [Google Scholar]
  80. Kornfeld H., Cruikshank W. W., Pyle S. W., Berman J. S., Center D. M. 1988; Lymphocyte activation by HIV-1 envelope glycoprotein. Nature; London: 335445–448
    [Google Scholar]
  81. Kowalski M., Potz J., Basiripour L., Dorfman T., Goh W. C., Terwilliger E., Dayton A., Rosen C., Haseltine W., Sodroski J. 1987; Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 237:1351–1355
    [Google Scholar]
  82. Lamarre D., Ashkenazi A., Fleury S., Smith D. H., Sekaly R.-P., Capon D. J. 1989; The MHC-binding and gp120-binding functions of CD4 are separable. Science 245:743–746
    [Google Scholar]
  83. Landau N. R., Warton M., Littman D. R. 1988; The envelope glycoprotein of the human immunodeficiency virus binds to the immunoglobulin-like domain of CD4. Nature; London: 334159–162
    [Google Scholar]
  84. Lando Z., Sarin P., Megson M., Greene W. C., Waldman T. A., Gallo R. C., Broder S. 1983; Association of human T-cell leukaemia/lymphoma virus with the Tac antigen marker for the human T-cell growth factor receptor. Nature; London: 305733–736
    [Google Scholar]
  85. Lasky L. A., Nakamura G., Smith D. H., Fennie C., Shimasaki C., Patzer E., Berman P., Gregory T., Capon D. J. 1987; Delineation of a region of the human immunodeficiency virus type 1 gpl20 glycoprotein critical for interaction with the CD4 receptor. Cell 50:975–985
    [Google Scholar]
  86. Lee M. R., Ho D. D., Gurney M. E. 1987; Functional interaction and partial homology between human immunodeficiency virus and neuroleukin. Science 237:1047–1051
    [Google Scholar]
  87. Lentz T. L., Burrage T. G., Smith A. L., Crick J., Tignor G. H. 1982; Is the acetylcholine receptor a rabies virus receptor?. Science 215:182–184
    [Google Scholar]
  88. Lentz T. L., Wilson P. T., Hawrot E., Speicher D. W. 1984; Amino acid sequence similarity between rabies virus glycoprotein and snake venom curaremimetic neurotoxins. Science 226:847–848
    [Google Scholar]
  89. Lentz T. L., Hawrot E., Wilson P. T. 1987; Synthetic peptides corresponding to sequences of snake venom neurotoxins and rabies virus glycoprotein bind to the nicotinic acetylcholine receptor. Proteins: Structure, Function, and Genetics 2:298–307
    [Google Scholar]
  90. Levy J. A. 1988; Mysteries of HIV: challenges for therapy and prevention. Nature; London: 333519–522
    [Google Scholar]
  91. Lifson J. D., Hwang K. M., Nara P. L., Fraser B., Padgett M., Dunlop N. M., Eiden L. E. 1988; Synthetic CD4 peptide derivatives that inhibit HIV infection and cytopathicity. Science 241:712–716
    [Google Scholar]
  92. Linsley P. S., Ledbetter J. A., Kinney-Thomas E., Hu S.-L. 1988; Effects of anti-gp 120 monoclonal antibodies on CD4 receptor binding by the env protein of human immunodeficiency virus type 1. Journal of Virology 62:3695–3702
    [Google Scholar]
  93. Lonberg-Holm K., Philipson L. 1974; Early interaction between animal viruses and cells. In Monographs in Virology 9 Melnick J. L. Edited by Basel: S. Karger;
    [Google Scholar]
  94. Luo M., Vriend G., Kamer G., Minor I., Arnold E., Rossmann M. G., Boege U., Scraba D. G., Duke G. M., Palmenberg A. C. 1987; The atomic structure of Mengo virus at 3·0 Å resolution. Science 235:182–191
    [Google Scholar]
  95. Mccray J., Werner G. 1987; Different rhinovirus serotypes neutralized by antipeptide antibodies. Nature; London: 329736–738
    [Google Scholar]
  96. Mcdougal J. S., Kennedy M. S., Sligh J. M., Cort S. P., Mawle A., Nicholson J. K. A. 1986a; Binding of HTLV-III/LAV to T4+ T cells by a complex of the 11 OK viral protein and the T4 molecule. Science 231:382–385
    [Google Scholar]
  97. Mcdougal J. S., Nicholson J. K. A., Cross G. D., Cort S. P., Kennedy M. S., Mawle A. C. 1986b; Binding of the human retrovirus HTLV-III/LAV/ARV/HIV to the CD4 (T4) molecule: conformation dependence, epitope mapping, antibody inhibition, and potential for idiotypic mimicry. Journal of Immunology 137:2937–2944
    [Google Scholar]
  98. Mcgrath M. S., Tamura G., Weissman I. L. 1987; Receptor mediated leukemogenesis: murine leukemia virus interacts with BCL: lymphoma cell surface IgM. Journal of Molecular and Cellular Immunology 3:227–242
    [Google Scholar]
  99. Machida A., Kishimoto S., Ohnuma H., Baba K., Ito Y., Miyamoto H., Funatsu G., Oda K., Usuda S., Togami S., Nakamura T., Miyakawa Y., Mayumi M. 1984; A polypeptide containing 55 amino acid residues coded by the pre-S region of hepatitis B virus deoxyribonucleic acid bears the receptor for polymerized human as well as chimpanzee albumins. Gastroenterology 86:910–918
    [Google Scholar]
  100. Maddon P. J., Dalgleish A. G., Mcdougal J. S., Clapham P. R., Weiss R. A., Axel R. 1986; The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348
    [Google Scholar]
  101. Mann D. L., Read-Connole E., Arthur L. O., Robey W. G., Wernet P., Schneider E. M., Blattner W. A., Popovic M. 1988; HLA-DR is involved in the HIV-1 binding site on cells expressing MHC class II antigens. Journal of Immunology 141:1131–1136
    [Google Scholar]
  102. Marsh M. 1989; Virus entry into animal cells. Advances in Virus Research 36:107–151
    [Google Scholar]
  103. Mastromarino P., Conti C., Goldoni P., Hauttecoeur B., Orsi N. 1987; Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. Journal of General Virology 68:2359–2369
    [Google Scholar]
  104. Mendelsohn C. L., Wimmer E., Racaniello V. R. 1989; Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855–865
    [Google Scholar]
  105. Minor P. D., Pipkin P. A., Hockley D., Schild G. C., Almond J. W. 1984; Monoclonal antibodies which block cellular receptors of poliovirus. Virus Research 1:203–213
    [Google Scholar]
  106. Mims C. A. 1986; Virus receptors and cell tropisms. Journal of Infection 12:199–203
    [Google Scholar]
  107. Mittler R. S., Hoffmann M. K. 1989; Synergism between HIV gpl20 and gp 120-specific antibody in blocking human T cell activation. Science 245:1380–1382
    [Google Scholar]
  108. Mizukami T., Fuerst T. R., Berger E. A., Moss B. 1988; Binding region for human immunodeficiency virus (HIV) and epitopes for HIV-binding monoclonal antibodies of the CD4 molecule defined by site-directed mutagenesis. Proceedings of the National Academy of Sciences, U.S.A 85:9273–9277
    [Google Scholar]
  109. Murphy F. A. 1985; Virus taxonomy. In Virology pp. 7–25 Fields B. N. Edited by New York: Raven Press;
    [Google Scholar]
  110. Murray M. G., Bradley J., Yang X.-F., Wimmer E., Moss E. G., Racaniello V. R. 1988; Poliovirus host range is determined by a short amino acid sequence in neutralization antigenic site I. Science 241:213–215
    [Google Scholar]
  111. Nemerow G. R., Mold C., Schwend V. K., Tollefson V., Cooper N. R. 1987; Identification of gp350 as the viral glycoprotein mediating attachment of Epstein-Barr virus (EBV) to the EBV/C3d receptor of B cells: sequence homology of gp350 and C3 complement fragment C3d. Journal of Virology 61:1416–1420
    [Google Scholar]
  112. Nemerow G. R., Houghten R. A., Moore M. D., Cooper N. R. 1989; Identification of an epitope in the major envelope protein of Epstein-Barr virus that mediates viral binding to the B lymphocyte EBV receptor (CR2). Cell 56:369–377
    [Google Scholar]
  113. Neurath A. R., Kent S. B. H., Strick N., Parker K. 1986; Identification and chemical synthesis of a host cell receptor binding site on hepatitis B virus. Cell 46:429–436
    [Google Scholar]
  114. Oldstone M. B. A. 1987; Molecular mimicry and autoimmune disease. Cell 50:819–820
    [Google Scholar]
  115. O’Neill H. C., Mcgrath M. S., Allison J. P., Weissmann I. L. 1987; A subset of T cell receptors associated with L3T4 molecules mediates C6VL leukemia cell binding of its cognate retrovirus. Cell 49:143–151
    [Google Scholar]
  116. Palmenberg A. 1987; A vaccine for the common cold?. Nature; London: 329668–669
    [Google Scholar]
  117. Paul R. W., Lee P. W. 1987; Glycophorin is the reovirus receptor on human erythrocytes. Virology 159:94–101
    [Google Scholar]
  118. Paul R. W., Choi A. H. C., Lee P. W. K. 1989; The α-anomeric form of sialic acid is the minimal receptor determinant recognized by reovirus. Virology 172:382–385
    [Google Scholar]
  119. Paulson J. C. 1985; Interactions of animal viruses with cell surface receptors. In The Receptors 2 pp. 131–219 Conn P. M. Edited by Orlando: Academic Press;
    [Google Scholar]
  120. Paulson J. C., Sadler J. E., Hill R. L. 1979; Restoration of specific myxovirus receptors to asialoerythrocytes by incorporation of sialic acid with pure sialyltransferases. Journal of Biological Chemistry 254:2120–2124
    [Google Scholar]
  121. Peiris J. S. M., Gordon S., Unkeless J. C., Porterfield J. S. 1981; Monoclonal anti-Fc receptor IgG blocks antibody enhancement of viral replication in macrophages. Nature; London: 289189–191
    [Google Scholar]
  122. Pert C. B., Hill J. M., Ruff M. R., Berman R. M., Robey W. G., Arthur L. O., Ruscetti F. W., Farrar W. L. 1986; Octapeptides deduced from the neuropeptide receptor-like pattern of antigen T4 in brain potently inhibit human immunodeficiency virus receptor binding and T-cell infectivity. Proceedings of the National Academy of Sciences, U.S.A 83:9254–9258
    [Google Scholar]
  123. Peterson A., Seed B. 1988; Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4. Cell 54:65–72
    [Google Scholar]
  124. Pevear D. C., Fancher M. J., Felock P. J., Rossmann M. G., Miller M. S., Diana G., Treasurywala A. M., Mckinlay M. A., Dutko F. J. 1989; Conformational change in the floor of the human rhinovirus canyon blocks adsorption to HeLa cell receptors. Journal of Virology 63:2002–2007
    [Google Scholar]
  125. Pontisso P., Petit M.-A., Bankowski M. J., Peeples M. E. 1989; Human liver plasma membranes contain receptors for the hepatitis B virus pre-Sl region and, via polymerized human serum albumin, for the pre-S2 region. Journal of Virology 63:1981–1988
    [Google Scholar]
  126. Pritchett T. J., Brossmer R., Rose U., Paulson J. C. 1987; Recognition of monovalent sialosides by influenza virus H3 hemagglutinin. Virology 160:502–506
    [Google Scholar]
  127. Reisner A. H. 1985; Similarity between the vaccinia virus 19K early protein and epidermal growth factor. Nature; London: 313801–803
    [Google Scholar]
  128. Richardson C. D., Choppin P. W. 1983; Oligopeptides that specifically inhibit membrane fusion by paramyxoviruses: studies on the site of action. Virology 131:518–532
    [Google Scholar]
  129. Richardson C. D., Scheid A., Choppin P. W. 1980; Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 and HA2 viral polypeptides. Virology 105:205–222
    [Google Scholar]
  130. Rogers G. N., Paulson J. C. 1983; Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361–373
    [Google Scholar]
  131. Rogers G. N., Paulson J. C., Daniels R. S., Skehel J. J., Wilson I. A., Wiley D. C. 1983; Single amino acid substitutions in influenza hemagglutinin change receptor binding specificity. Nature; London: 30476–78
    [Google Scholar]
  132. Rogers G. N., Herrler G., Paulson J. C., Klenk H.-D. 1986; Influenza C virus uses 9-O-acetyl-N-acetylneuraminic acid as a high affinity receptor determinant for attachment to cells. Journal of Biological Chemistry 261:5947–5951
    [Google Scholar]
  133. Rossmann M. G. 1988; Viral receptors and drug design. Nature; London: 333392–393
    [Google Scholar]
  134. Rossmann M. G., Palmenberg A. C. 1988; Conservation of the putative receptor attachment site in picomaviruses. Virology 164:373–382
    [Google Scholar]
  135. Rossmann M. G., Arnold E., Erickson J. W., Frankenberger E. A., Griffith J. P., Hecht H.-J., Johnson J. E., Kamer G., Luo M., Mosser A. G., Rueckert R. R., Sherry B., Vriend G. 1985; Structure of a human common cold virus and functional relationship to other picomaviruses. Nature; London: 317145–153
    [Google Scholar]
  136. Ruff M. R., Martin B. M., Ginns E. I., Farrar W. L., Pert C. B. 1987; CD4 receptor binding peptides that block HIV infectivity cause human monocyte chemotaxis. Relationship to vasoactive intestinal polypeptide. FEBS Letters 211:17–22
    [Google Scholar]
  137. Sattentau Q. J., Weiss R. A. 1988; The CD4 antigen: physiological ligand and HIV receptor. Cell 52:631–633
    [Google Scholar]
  138. Sattentau Q. J., Dalgleish A. G., Weiss R. A., Beverly P. C. L. 1986; Epitopes of the CD4 antigen and HIV infection. Science 234:1120–1123
    [Google Scholar]
  139. Schlegel R., Tralka T. S., Willingham M. C., Pastan I. 1983; Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site?. Cell 32:639–646
    [Google Scholar]
  140. Sherry B., Mosser A. G., Colonno R. J., Rueckert R. R. 1986; Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14. Journal of Virology 57:246–257
    [Google Scholar]
  141. Smith D. H., Byrn R. A., Marsters S. A., Gregory T., Groopman J. E., Capon D. J. 1987; Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science 238:1704–1707
    [Google Scholar]
  142. Springer G. F., Schwick H. G., Fletcher M. A. 1969; The relationship of the influenza virus inhibitory activity of glycoproteins to their molecular size and sialic acid content. Proceedings of the National Academy of Sciences, U.S.A 64:634–641
    [Google Scholar]
  143. Srinivasappa J., Saegusa J., Prabhakar B. S., Gentry M. K., Buchmeier M. J., Wiktor T. J., Koprowski H., Oldstone M. B. A., Notkins A. L. 1986; Molecular mimicry: frequency of reactivity of monoclonal antiviral antibodies with normal tissues. Journal of Virology 57:397–401
    [Google Scholar]
  144. Staunton D. E., Merluzzi V. J., Rothlein R., Barton R., Marlin S. D., Springer T. A. 1989; A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853
    [Google Scholar]
  145. Steinman R. M., Mellman I. S., Muller W. A., Cohn Z. A. 1983; Endocytosis and recycling of plasma membrane. Journal of Cell Biology 96:1–27
    [Google Scholar]
  146. Sun N.-C., Ho D. D., Sun C. R. Y., Liou R.-S., Gordon W., Fung M. S. C., Li X.-L., Ting R. C., Lee T.-H., Chang N. T., Chang T.-W. 1989; Generation and characterization of monoclonal antibodies to the putative CD4-binding domain of human immunodeficiency virus type 1 gpl20. Journal of Virology 63:3579–3585
    [Google Scholar]
  147. Superti F., Hauttecoeur B., Morelec M.-J., Goldoni P., Bizzini B., Tsiang H. 1986; Involvement of gangliosides in rabies virus infection. Journal of General Virology 67:47–56
    [Google Scholar]
  148. Tanner J., Weiss J., Fearon D., Whang Y., Kieff E. 1987; Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 50:203–213
    [Google Scholar]
  149. Tardieu M., Epstein R. L., Weiner H. L. 1982; Interaction of viruses with cell surface receptors. International Review of Cytology 80:27–61
    [Google Scholar]
  150. Taylor H. P., Dimmock N. J. 1985a; Mechanism of neutralization of influenza virus by secretory IgA is different from that of monomeric IgA or IgG. Journal of Experimental Medicine 161:198–209
    [Google Scholar]
  151. Taylor H. P., Dimmock N. J. 1985b; Mechanisms of neutralization of influenza virus by IgM. Journal of General Virology 66:903–907
    [Google Scholar]
  152. Till M. A., Ghetie V., Gregory T., Patzer E. J., Porter J. P., Uhr J. W., Capon D. J., Vitetta E. S. 1988; HIV-infected cells are killed by rCD4-ricin A chain. Science 242:1166–1168
    [Google Scholar]
  153. Tomassini J. E., Graham D., Dewitt C. M., Lineberger D. W., Rodkey J. A., Colonno R. J. 1989; cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proceedings of the National Academy of Sciences, U.S.A 86:4907–4911
    [Google Scholar]
  154. Traunecker A., Luke W., Karjalainen K. 1988; Soluble CD4 molecules neutralize human immunodeficiency virus type 1. Nature; London: 33184–86
    [Google Scholar]
  155. Traunecker A., Schneider J., Kiefer H., Karjalainen K. 1989; Highly efficient neutralization of HIV with recombinant CD4-immunoglobulin molecules. Nature; London: 33968–20
    [Google Scholar]
  156. Tschachler E., Groh V., Popovic M., Mann D. L., Konrad K., Safai B., Eron L., Veronese F. D., Wolff K., Stingl G. 1987; Epidermal Langerhans cells - a target for HTLV-III/LAV infection. Journal of Investigative Dermatology 88:233–237
    [Google Scholar]
  157. Tsiang H., de la Porte S., Ambroise D. J., Derer M., Koenig J. 1986; Infection of cultured rat myotubes and neurons from the spinal cord by rabies virus. Journal of Neuropathology and Experimental Neurology 45:28–42
    [Google Scholar]
  158. Twardzik D. R., Brown J. P., Ranchalis J. E., Todaro G. J., Moss B. 1985; Vaccinia virus-infected cells release a novel polypeptide functionally related to transforming and epidermal growth factors. Proceedings of the National Academy of Sciences, U.S.A 82:5300–5304
    [Google Scholar]
  159. Weinhold K. J., Lyerly H. K., Stanley S. D., Austin A. A., Matthews T. J., Bolognesi D. P. 1989; HIV-1 gpl20-mediated immune suppression and lymphocyte destruction in the absence of viral infection. Journal of Immunology 142:3091–3097
    [Google Scholar]
  160. Weis W., Brown J. H., Cusack S., Paulson J. C., Skehel J. J., Wiley D. C. 1988; Structure of the influenza virus haemagglutinincomplexed with its receptor, sialic acid. Nature; London: 333426–431
    [Google Scholar]
  161. White J. M., Littman D. R. 1989; Viral receptors of the immunoglobulin superfamily. Cell 56:725–728
    [Google Scholar]
  162. Wiley D. C., Skehel J. J. 1987; The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annual Reviews of Biochemistry 56:365–394
    [Google Scholar]
  163. Wiley D. C., Wilson I. A., Skehel J. J. 1981; Structural identification of the antibody binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature; London: 289373–378
    [Google Scholar]
  164. Williams W. V., Moss D. A., Kieber-Emmons T., Cohen J. A., Myers J. N., Weiner D. B., Greene M. I. 1989; Development of biologically active peptides based on antibody structure. Proceedings of the National Academy of Sciences, U.S.A 86:5537–5541
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-4-751
Loading
/content/journal/jgv/10.1099/0022-1317-71-4-751
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error