Nucleotide sequence of the glycoprotein S gene of bovine enteric coronavirus and comparison with the S proteins of two mouse hepatitis virus strains Free

Abstract

The gene encoding the spike glycoprotein (S) of bovine enteric coronavirus (BECV) was cloned and its complete sequence of 4092 nucleotides was determined. This sequence contained a single long open reading frame with a coding capacity of 1363 amino acids ( 150747). The predicted protein had 19 -glycosylation sites. A signal sequence comprising 17 amino acids was observed starting from the first methionine residue. A potential peptidase cleavage site was located between amino acids 763 and 767. These cleavages explain the maturation of the primary product of the S gene to SI ( 104692) and S2 ( 84175) spike structural proteins. Two amphipathic α-helices (amino acids 1007 to 1077 and 1269 to 1294) which may constitute the 12 nm stalk of the viral spike were also observed; another a-helix (amino acids 1305 to 1335) may be involved in the anchorage of the spike in the viral membrane. Comparison of this protein sequence to the described homologous mouse hepatitis (MHV) strain A59 and MHV-JHM S protein sequences led us to suggest that MHV-A59 and MHV-JHM S genes could be derived from a deletion of the BECV S gene.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-2-487
1990-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/2/JV0710020487.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-2-487&mimeType=html&fmt=ahah

References

  1. Biggin M. D., Gibson T. J., Hong G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of Sciences,U.S.A 80:3963–3965
    [Google Scholar]
  2. Binns M. M., Boursnell M. E. G., Cavanagh D., Pappin D. J. C., Brown T. D. K. 1985; Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. Journal of General Virology 66:719–726
    [Google Scholar]
  3. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  4. Bridger J. C., Woode G. N., Meyling A. 1978; Isolation of coronaviruses from neonatal calf diarrhoea in Great Britain and Denmark. Veterinary Microbiology 3:101–103
    [Google Scholar]
  5. CruciÈre C., Laporte J. 1988; Sequence and analysis of bovine enteric coronavirus (FI 5) genome I. Sequence of the gene coding for the nucleocapsid protein; analysis of the predicted protein. Annales de I’lnstitut Pasteur 139:123–138
    [Google Scholar]
  6. De Groot R. J., Lenstra J. A., Luytjes W., Niesters H. G. M., Horzinek M. C., Van Der Zeijst B. A. M., Spaan W. J. M. 1987; Sequence and structure of the coronavirus peplomer protein. In Biochemistry and Biology of Coronaviruses pp. 31–38 Lai M. M. C., Stohlman S. A. Edited by New York: Plenum Press;
    [Google Scholar]
  7. Deininger P. L. 1983; Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Analytical Biochemistry 129:216–223
    [Google Scholar]
  8. Deregt D., Babiuk L. A. 1987; Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology 161:410–420
    [Google Scholar]
  9. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  10. Gouet PH., Contrepois M., Dubourguier H., Riou Y., Scherrer R., Laporte J., Vautherot J. F., Cohen J., L’Haridon R. 1978; The experimental production of diarrhea in colostrum- deprived axenic and gnotoxenic calves with enteropathogenic E. coli, rotavirus, coronavirus and in combined infection of rotavirus and E. coli . Annales de Recherches Vétérinaires 9:433–440
    [Google Scholar]
  11. Hunter E., Hill E., Hardwick M., Brown A., Schwartz D. E., Tizard R. 1983; Complete sequence of the Rous sarcoma virus env gene: identification of structural and functional regions of its product. Journal of Virology 46:920–936
    [Google Scholar]
  12. King B., Brian D. A. 1982; Bovine coronavirus structural proteins. Journal of Virology 42:700–707
    [Google Scholar]
  13. Kozak M. 1987; At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. Journal of Molecular Biology 196:947–950
    [Google Scholar]
  14. Lai M. M. C., Baric R. S., Brayton P. R., Stohlman S. A. 1984; Characterization of leader RNA sequences on the virion and mRNAs of mouse hepatitis virus, a cytoplasmic RNA virus. Proceedings of the National Academy of Sciences, U.S.A 81:3626–3630
    [Google Scholar]
  15. Laporte J., Bobulesco P. 1981; Polypeptide structure of bovine enteric coronavirus: comparison between a wild strain purified from feces and a HRT18 cell adapted strain. In Biochemistry and Biology of Coronaviruses pp. 181–184 ter Meulen V., Siddel S., Wege H. Edited by New York: Plenum Press;
    [Google Scholar]
  16. Laporte J., Bobulesco P., Rossi F. 1980; Une lignée cellulaire particulièrement sensible à la réplication du coronavirus entéritique bovin: ies cellules HRT18. Comptes rendus de I’Académie des sciences 290:623–626
    [Google Scholar]
  17. Lapps W., Hogue B. G., Brian D. A. 1987; Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology 157:47–57
    [Google Scholar]
  18. Luytjes W., Sturman L. S., Bredenbeek P. J., Charite J., Van Der Zeijst B. A. M., Horzinek M. C., Spaan W. J. M. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  19. Luytjes W., Bredenbeek P. J., Noten A. F. H., Horzinek M. C., Spaan W. J. M. 1988; Sequence of mouse hepatitis virus A59 mRNA2: indications for RNA recombination between coronaviruses and influenza C virus. Virology 166:415–422
    [Google Scholar]
  20. MacGinnes L. W., Morrison T. G. 1986; Nucleotide sequence of the gene encoding the Newcastle disease virus fusion protein and comparisons of paramyxovirus fusion protein sequences. Virus Research 5:343–356
    [Google Scholar]
  21. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Mebus C. A., Stair E. L., Rhodes M. B., Twiehaus M. J. 1973a; Neonatal calf diarrhea: propagation, attenuation, and characteristics of a coronavirus-like agent. American Journal of Veterinary Research 34:145–150
    [Google Scholar]
  23. Mebus C. A., Stair E. L., Rhodes M. B., Twiehaus M. J. 1973b; Pathology of neonatal calf diarrhea induced by a coronavirus-like agent. Veterinary Pathology 10:45–64
    [Google Scholar]
  24. Parker M. D., Cox G. J., Deregt D., Fitzpatrick D. R., Babiuk L. A. 1989; Cloning and in vitro expression of the E3 haemagglutinin glycoprotein of bovine coronavirus. Journal of General Virology 70:155–164
    [Google Scholar]
  25. Queen C., Korn L. J. 1984; A comprehensive sequence analysis program for the IBM personal computer. Nucleic Acids Research 12:581–599
    [Google Scholar]
  26. Rao M. J. K., Argos P. 1986; A conformational preference parameter to predict helices in integral membrane proteins. Biochimica et biophysica acta 869:197–214
    [Google Scholar]
  27. Rasschaert D., Laude H. 1987; The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1883–1890
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  29. Schmidt I., Skinner M., Siddell S. 1987; Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. Journal of General Virology 68:47–56
    [Google Scholar]
  30. Siddell S., Wege H., Ter Meulen V. 1982; The structure and replication of coronaviruses. Current Topics in Microbiology and Immunology 99:131–163
    [Google Scholar]
  31. Sturman L. S., Holmes K. V. 1983; The molecular biology of coronaviruses. Advances in Virus Research 28:35–112
    [Google Scholar]
  32. Vaquero C., Sanceau J., Catinot L., Andreu G., Falcoff E., Falcoff R. 1982; Translation of mRNA from phytohemagglutinin-stimulated human lymphocytes: characterization of interferon mRNAs. Journal of Interferon Research 2:217–228
    [Google Scholar]
  33. Vautherot J. F., Laporte J., Madelaine M. F., Bobulesco P., Roseto A. 1984; Antigenic and polypeptide structure of bovine enteritic coronavirus as defined by monoclonal antibodies. In Molecular Biology and Pathogenesis of Coronaviruses pp. 117–132 Rottier P. J. M., Van der Zeijst B. A. M., Spaan W. J. M., Horzinek M. C. Edited by New York: Plenum Press;
    [Google Scholar]
  34. Von Heijne G. 1984; How signal sequences maintain cleavage specificity. Journal of Molecular Biology 173:243–251
    [Google Scholar]
  35. Watson M. E. E. 1984; Compilation of published signal sequences. Nucleic Acids Research 12:5145–5164
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-2-487
Loading
/content/journal/jgv/10.1099/0022-1317-71-2-487
Loading

Data & Media loading...

Most cited Most Cited RSS feed