1887

Abstract

In previous work, we observed that H-2-restricted herpes simplex virus (HSV)-specific cytotoxic T lymphocytes (CTLs) were effectively able to lyse transfected target cells expressing HSV glycoprotein C (gC), but not cells expressing gB, gD or gE. To confirm and extend our observations on the specificity of anti-HSV CTLs, recombinant adenovirus (Ad) vectors able to express HSV-1 gB or gC (AdgB2 or AdgC) were constructed. Syngeneic target cells infected with AdgB2 were efficiently lysed by primary H-2 and H-2, but not by H-2-restricted HSV-specific CTL. Limiting dilution studies indicated that 4 to 10% of H- 2-restricted HSV-specific CTLs recognize gB. H-2, H-2 and H-2-restricted anti-HSV-1 CTLs were unable to lyse AdgC-infected syngeneic target cells. To examine the apparent discrepancy between the previous results involving transfected H-2 cells expressing gC and the present results involving AdgC-infected cells, gC-expressing cell lines used in previous experiments were subcloned and retested in CTL assays. DC2 cells which were lysed by HSV-specific CTLs in the previous experiments remained sensitive to anti-HSV CTLs but two other clones derived from the same transfection were not lysed. Further, L cells transfected with the gC or gD gene coupled to the mouse mammary tumour virus promoter and capable of expressing high levels of the glycoproteins following dexamethasone induction were not lysed by H-2-restricted anti-HSV CTLs. These results suggest that HSV-specific CTLs do not recognize gC, at least when it is expressed using an Ad vector and in most transfected cell lines, whereas a significant proportion of anti-viral CTLs recognize gB presented in some but not all murine haplotypes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-2-387
1990-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/2/JV0710020387.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-2-387&mimeType=html&fmt=ahah

References

  1. Blacklaws B. A., Nash A. A., Darby G. 1987; Specificity of the immune response of mice to herpes simplex virus glycoproteins B and D constitutively expressed on L cell lines. Journal of General Virology 68:1103–1114
    [Google Scholar]
  2. Burgert H., Kvist S. 1985; An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41:987–997
    [Google Scholar]
  3. Carter V. C., Schaffer P. A., Tevethia S. S. 1981; The involvement of herpes simplex virus type 1 glycoproteins in cell- mediated immunity. Journal of Immunology 126:1655–1660
    [Google Scholar]
  4. Chakrabarti S., Brechling K., Moss B. 1985; Vaccinia virus expression vector: coexpression of β-galactosidase provides visual screening of recombinant virus plaques. Molecular and Cellular Biology 5:3403–3409
    [Google Scholar]
  5. Coupar B. E., Andrew M. E., Both G. W., Gould K., Boyle D. B. 1986; Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. European Journal of Immunology 16:1479–1489
    [Google Scholar]
  6. Eisenberg R. G., Ponce De Leon M., Pereira L., Long D., Cohen G. H. 1982; Purification of glycoprotein D of herpes simplex virus types 1 and 2 by use of monoclonal antibody. Journal of Virology 41:1099–1104
    [Google Scholar]
  7. Friedman H. M., Yee A., Diggelman H., Seidel-Duga C. A., Eisenberg R. J., Cohen G. H. 1989; Use of glucocorticoid inducible promoter for expression of herpes simplex virus type 1 glycoprotein gC1, a cytotoxic protein in mammalian cells. Molecular and Cellular Biology 9:2303–2314
    [Google Scholar]
  8. Germain R. N. 1988; Antigen processing and CD4+ T cell depletion in AIDS. Cell 54:441–444
    [Google Scholar]
  9. Gibson M., Spear P. G. 1983; Insertion mutants of herpes simplex virus have a duplication of the glycoprotein D gene and express two different forms of glycoprotein D. Journal of Virology 48:396–404
    [Google Scholar]
  10. Glorioso J., Kees U., Kumel G., Kirchner H., Krammer P. H. 1985; Identification of herpes simplex virus type 1 (HSV-1) glycoprotein gC as the immunodominant antigen for HSV-1 specific memory cytotoxic T lymphocytes. Journal of Immunology 135:575–582
    [Google Scholar]
  11. Gooding L. R., Elmore L. W., Tollefson A. E., Brady H. A., Wold W. E. 1988; A 14,700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 53:341–346
    [Google Scholar]
  12. Graham F. L., Van Der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  13. Graham F. L., Smiley J., Russell W. C., Nairn R. 1977; Characteristics of a human cell line transformed by DNA from human adenovirus 5. Journal of General Virology 36:59–72
    [Google Scholar]
  14. Graham F. L., Harrison T., Williams J. 1978; Defective transforming capacity of adenovirus type 5 host range mutants. Virology 86:10–21
    [Google Scholar]
  15. Haj-Ahmad Y., Graham F. L. 1986; Development of a helper- independent human adenovirus vector and its use in the transfer of the herpes simplex virus thymidine kinase gene. Journal of Virology 57:267–274
    [Google Scholar]
  16. Holland T. C., Honxa F. L., Marlin S. D., Levine M., Glorioso J. 1984; Herpes simplex virus type 1 glycoprotein C-negative mutants exhibit multiple phenotypes, including secretion of truncated glycoproteins. Journal of Virology 52:566–574
    [Google Scholar]
  17. Johnson D. C., Ghosh-Choudhury G., Smiley J. R., Falls L., Graham F. L. 1988; Abundant expression of herpes simplex virus glycoprotein gB using an adenovirus vector. Virology 164:1–14
    [Google Scholar]
  18. Lawman M. J. P., Courtney R. J., Eberle R., Schaffer P. A., O’Hara M. K., Rouse B. T. 1980; Cell-mediated immunity to herpes simplex virus: specificity of cytotoxic T cells. Infection and Immunity 30:451–461
    [Google Scholar]
  19. Liu C.-C., Stefen M., King F., Young F. D. 1987; Identification, isolation and characterization of a novel cytotoxin in murine cytotoxic lymphocytes. Cell 51:393–401
    [Google Scholar]
  20. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Mcdermott M. R., Graham F. L., Hanke T., Johnson D. C. 1989; Protection of mice against lethal challenge with herpes simplex virus by vaccination with an adenovirus vector expressing HSV glycoprotein B. Virology 169:244–247
    [Google Scholar]
  22. Mcgeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., Mcnab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  23. Mclaughlin-Taylor E., Willey D. E., Cantin E. M., Eberle R., Moss B., Openshaw H. 1988; A recombinant vaccinia virus expressing herpes simplex virus type 1 glycoprotein B induces cytotoxic T lymphocytes in mice. Journal of General Virology 69:1731–1734
    [Google Scholar]
  24. Martin S., Moss B., Berman P. W., Laskey L. A., Rouse B. T. 1987; Mechanisms of antiviral immunity induced by a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: cytotoxic T cells. Journal of Virology 61:726–734
    [Google Scholar]
  25. Martin S., Courtney R. J., Fowler G., Rouse B. T. 1988; Herpes simplex virus type-1-specific cytotoxic T lymphocytes recognize virus nonstructural proteins. Journal of Virology 62:2265–2273
    [Google Scholar]
  26. Nash A. A., Leung K.-N., Wildy P. 1985; The T-cell-mediated immune response of mice to herpes simplex virus. In The Herpesviruses 4 pp. 87–102 Roizman B., Lopez C. Edited by New York: Plenum Press;
    [Google Scholar]
  27. Persson R. H., Bacchetti S., Smiley J. R. 1985; Cells that constitutively express the herpes simplex virus immediate-early protein ICP4 allow efficient activation of viral delayed-early genes in trans . Journal of Virology 54:414–421
    [Google Scholar]
  28. Pfizenmaier K., Jung H., Starzinski-Powitz A., Rollinghoff M., Wagner H. 1977; The role of T cells in anti-herpes simplex virus immunity. I. Induction of antigen-specific cytotoxic T lymphocytes. Journal of Immunology 119:939–944
    [Google Scholar]
  29. Porter E. H., Hewitt H. B., Blake E. K. 1973; The transplantation kinetics of tumour cells. British Journal of Cancer 27:55–62
    [Google Scholar]
  30. Reddehase M. J., Koszinowski U. H. 1984; Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature; London: 312369–371
    [Google Scholar]
  31. Rosenthal K. L., Smiley J. R., South S., Johnson D. C. 1987; Cells expressing herpes simplex virus glycoprotein gC but not gB, gD, or gE are recognized by murine virus-specific cytotoxic T lymphocytes. Journal of Virology 61:2438–2447
    [Google Scholar]
  32. Stinski M. F. 1983; Molecular biology of cytomegaloviruses. In The Herpesviruses 2 pp. 67–113 Roizman B. Edited by New York & London: Plenum Press;
    [Google Scholar]
  33. Townsend A. R. M., Mcmichael A. J., Carter N. P., Huddlestone J. A., Brownlee G. G. 1984; Cytotoxic T cell recognition of the influenza nucleoprotein and hemagglutinin expressed in transfected mouse L cells. Cell 39:13–25
    [Google Scholar]
  34. Townsend A. R. M., Gotch F. M., Davey J. 1985; Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell 42:457–467
    [Google Scholar]
  35. Townsend A. R. M., Bastin J., Gould K., Brownlee G., Andrew M., Coupar B., Boyle D., Chan S., Smith J. 1988; Defective presentation to class I-restricted cytotoxic T lymphocytes in vaccinia-infected cells is overcome by enhanced degradation of antigen. Journal of Experimental Medicine 168:1211–1224
    [Google Scholar]
  36. Volkmer H., Bertholet C., Jonjic S., Wittek R., Koszinowski U. H. 1987; Cytolytic T lymphocyte recognition of murine cytomegalovirus nonstructural immediate-early protein pp89 expressed by recombinant vaccinia virus. Journal of Experimental Medicine 166:668–677
    [Google Scholar]
  37. Von Boehmer H., Hengartner H., Nabholz M., Lenhardt W., Schreis M. 1979; Fine specificity of a continuously growing killer cell clone specific for H-Y antigen. European Journal of Immunology 9:592–599
    [Google Scholar]
  38. Walker C. M., Paetku V., Rawls W. E., Rosenthal K. 1985; Abrogation of anti-Pichinde virus cytotoxic T cell memory by cyclophosphamide and restoration by coinfection and interleukin 2. Journal of Immunology 135:1401–1407
    [Google Scholar]
  39. Whitton J. L., Southern P. J., Oldstone M. B. A. 1988; Analysis of the cytotoxic T lymphocyte response to glycoprotein and nucleoprotein components of lymphocytic choriomeningitis virus. Virology 162:321–327
    [Google Scholar]
  40. Yewdell J. W., Bennick J. R., Smith G. L., Moss B. 1985; Influenza A virus nucleoprotein is a major target antigen for crossreactive anti-influenza A virus cytotoxic T lymphocytes. Proceedings of the National Academy of Sciences, U.S.A 82:1785–1789
    [Google Scholar]
  41. Zarling J. M., Moran P. A., Laskey L. A., Moss B. 1986; Herpes simplex virus (HSV)-specific human T-cell clones recognise HSV glycoprotein D expressed by a recombinant vaccinia virus. Journal of Virology 59:506–509
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-2-387
Loading
/content/journal/jgv/10.1099/0022-1317-71-2-387
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error