1887

Abstract

A panel of nine neutralizing monoclonal antibodies was used to analyse the antigenic properties of 188 plaque- purified type 3 poliovirus strains from 17 faecal specimens, derived from eight people during a 2 month observation period. Most poliovirus specimens consisted of a mixture of antigenically distinct variants and the composition of the mixture was found to change between sequential specimens in many individuals, indicating antigenic evolution. Thirty-five strains representing different antigenic patterns were selected for partial sequencing of genomic RNA. Mutations leading to amino acid substitutions, as well as silent mutations, were seen at and close to the known antigenic sites. The frequency of silent mutations was used to estimate the evolutionary potential of the virus. The largest difference in silent changes between strains isolated from one person was 0 ·8 %, which corresponds to a minimum of about 60 mutations per genome within a period of 3 weeks. The observed incidence of silent mutations between isolates from different persons was usually between 0·8 and 2%. These figures agree with the previously reported overall mutation rates of poliovirus, determined by other methods.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-2-317
1990-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/2/JV0710020317.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-2-317&mimeType=html&fmt=ahah

References

  1. Batschelet E., Domingo E., Weismann C. 1976; The proportion of revertant and mutant phage in a growing population as a function of mutation and growth rate. Gene 1:27–32
    [Google Scholar]
  2. Domingo E., Sabo D., Taniguchi T., Weismann C. 1978; Nucleotide sequence heterogeneity of an RNA phage population. Cell 13:735–744
    [Google Scholar]
  3. Domingo E., Martinez-Salas E., Sobrino F., De La Torre J. C., Portela A., Ortín J., Lopez-Galindez C., Perez-Breena P., Villanueva N., Najera R., Vandepol S., Steinhauer D., De Polo N., Holland J. 1985; The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance - a review. Gene 40:1–8
    [Google Scholar]
  4. Ferguson M., Minor P. D., Magrath D. I., Qui Y.-H., Spitz M., Schild G. C. 1984; Neutralization epitopes on poliovirus type 3 particles: an analysis using monoclonal antibodies. Journal of General Virology 65:197–201
    [Google Scholar]
  5. Hahn B. H., Shaw G. M., Taylor M. E., Redfield R. R., Markham P. D., Salahuddin S. Z., Wong-Staal F., Gallo R. C., Parks E. S., Parks W. P. 1986; Genetic variation in HTLV-III/LAV over time in patients with AIDS or at risk for AIDS. Science 232:1548–1553
    [Google Scholar]
  6. Hayashida H., Toh H., Kikuno R., Miyata T. 1985; Evolution of influenza virus genes. Molecular Biology and Evolution 2:289–303
    [Google Scholar]
  7. Holland J. J., Spindler K., Horodyski F., Grabau E., Nichol S., VanDepol S. 1982; Rapid evolution of RNA genomes. Science 215:1577–1585
    [Google Scholar]
  8. Hovi T., Cantell K., Huovilainen A., Kinnunen E., Kuronen T., Lapinleimu K., Pöyry T., Roivainen M., Salama N., Stenvik M., Silander A., Thoden C.-J., Salminen S., Weckström P. 1986; Outbreak of paralytic poliomyelitis in Finland: widespread circulation of antigenically altered poliovirus type 3 in a vaccinated population. Lancet i:1427–1432
    [Google Scholar]
  9. Hughes P. J., Evans D. M. A., Minor P. D., Schild G. C., Almond J. W., Stanway G. 1986; The nucleotide sequence of a type 3 poliovirus isolated during a recent outbreak of poliomyelitis in Finland. Journal of General Virology 67:2093–2102
    [Google Scholar]
  10. Huovilainen A., Hovi T., Kinnunen L., Ferguson M., Minor P. D. 1987; Evolution of poliovirus during an outbreak: sequential type 3 poliovirus isolates from several persons show shifts of neutralization determinants. Journal of General Virology 68:1373–1378
    [Google Scholar]
  11. Huovilainen A., Kinnunen L., Ferguson M., Hovi T. 1988; Antigenic variation among 173 strains of type 3 poliovirus isolated in Finland during the 1984 to 1985 outbreak. Journal of General Virology 69:1941–1948
    [Google Scholar]
  12. Kew O. M., Nottay B. K., Hatch M. H., Nakano J. H., Obijeski J. F. 1981; Multiple genetic changes can occur in the oral poliovaccines upon replication in humans. Journal of General Virology 56:337–347
    [Google Scholar]
  13. Kimura M. 1981; Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences U.S.A.: 78454–458
    [Google Scholar]
  14. Kinnunen L., Hovi T. 1989; Partial RNA sequencing of eight supposed derivatives of type 3 poliovirus/USA/Saukett/50 reveals remarkable differences between 3 apparent substrains. Virology 170:316–320
    [Google Scholar]
  15. Lapinleimu K. 1984; Elimination of poliomyelitis in Finland. Reviews of Infectious Diseases 6: supplement 2 457–460
    [Google Scholar]
  16. Magrath D. I., Evans D. M. A., Ferguson M., Schild G. C., Minor P. D., Horaud F., Crainic R., Stenvik M., Hovi T. 1986; Antigenic and molecular properties of type 3 poliovirus responsible for an outbreak of poliomyelitis in a vaccinated population. Journal of General Virology 67:899–905
    [Google Scholar]
  17. Minor P. D., John A., Ferguson M., Icenogle J. P. 1986; Antigenic and molecular evolution of the vaccine strain of type 3 poliovirus during the period of excretion by a primary vaccine. Journal of General Virology 67:693–706
    [Google Scholar]
  18. Minor P. D., Ferguson M., Phillips A., Magrath D. I., Huovilainen A., Hovi T. 1987; Conservation in vivoof protease cleavage sites in antigenic sites of poliovirus. Journal of General Virology 68:1857–1865
    [Google Scholar]
  19. Nottay B. K., Kew O. M., Hatch M. H., Heyward J. T., Obijeski J. F. 1981; Molecular variation of type 1 vaccine-related and wild poliovirus during replication in humans. Virology 108:405–423
    [Google Scholar]
  20. Parvin J. D., Moscona A., Pan W. T., Leider J. M., Palese P. 1986; Measurement of the mutation rates of animal viruses influenza A virus and poliovirus type 1. Journal of Virology 59:377–383
    [Google Scholar]
  21. Rico-Hesse R., Pallansch M, Nottay B. K., Kew O. M. 1987; Geographic distribution of wild polivirus type 1 genotypes. Virology 160:311–322
    [Google Scholar]
  22. Stanway G., Cann A. J., Hauptmann R., Hughes P., Clarke L. D., Mountford R. C., Minor P. D., Schild G. C., Almond J. W. 1983; The nucleotide sequence of poliovirus type 3 Leon 12a, b: comparison with poliovirus type 1. Proceedings of the National Academy of Sciences U.S.A.: 811539–1543
    [Google Scholar]
  23. Steinhauer D. A., Holland J. J. 1987; Rapid evolution of RNA viruses. Annual Review of Microbiology 41:409–433
    [Google Scholar]
  24. Toyoda H., Kohara M., Kataoka M., Suganuma T., Omata T., Imura N., Nomoto A. 1984; Complete nucleotide sequences of all three poliovirus genomes. Journal of Molecular Biology 174:561–585
    [Google Scholar]
  25. Ukkonen P., Huovilainen A., Hovi T. 1986; Detection of poliovirus antigen by enzyme immunoassay. Journal of Clinical Microbiology 24:954–958
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-2-317
Loading
/content/journal/jgv/10.1099/0022-1317-71-2-317
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error