1887

Abstract

The structural proteins of rubella virus (RV) are translated as a large polyprotein precursor, p110, which is processed to produce the mature virion components, the 33K capsid protein (C) and the two envelope glycoproteins, E1 (58K) and E2 (42K to 47K). The precise processing mechanism has not been elucidated; however it must include at least two proteolytic cleavages to release the individual virion components from the polyprotein, and it must provide for their dichotomous intracellular distribution. The C protein remains in the cytoplasm where it participates in the formation of nucleocapsids, while the envelope glycoproteins enter the cellular secretory pathway and are -glycosylated and cleaved. Sequence analysis of the 24S mRNA encoding the polyprotein precursor suggests that both E1 and E2 are preceded by signal peptides for translocation across the membrane of the rough endoplasmic reticulum. A recent study has provided direct evidence that the putative signal peptide preceding E1 can in fact mediate translocation of E1. In this study, we have used translation- translocation assays to examine further the processing of RV glycoproteins. We have shown that the putative signal sequence preceding E2 can mediate translocation of the E2 protein in the absence of an intact E1 signal peptide. The experiments also revealed that cleavage of the E2-E1 polyprotein requires (i) the E2 signal peptide, (ii) microsomal membranes and (iii) sequences beyond the proximal half of the E1 signal peptide. Together these results suggest that separation of the E2 signal sequence as well as the proteolytic cleavage of El from E2 is performed by the cellular enzyme, signal peptidase.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-12-3047
1990-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/12/JV0710123047.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-12-3047&mimeType=html&fmt=ahah

References

  1. Clarke D. M., Loo T. W., Hui I., Chong P., Gillam S. 1987; Nucleotide sequence and in vitro expression of rubella virus 24S subgenomic mRNA encoding the structural proteins E1, E2 and C. Nucleic Acids Research 15:3041–3057
    [Google Scholar]
  2. Clarke D. M., Loo T. W., Mcdonald H., Gillam S. 1988; Expression of rubella virus cDNA coding for the structural proteins. Gene 65:23–30
    [Google Scholar]
  3. Frey T. K., Marr L. D. 1988; Sequence of the region coding for virion proteins C and E2 and the carboxy terminus of the nonstructural proteins of rubella virus: comparison with alpha-viruses. Gene 62:85–99
    [Google Scholar]
  4. Frey T. K., Marr L. D., Hemphill M. L., Dominquez G. 1986; Molecular cloning and sequencing of the region of the rubella virus genome coding for glycoprotein E1. Virology 154:228–232
    [Google Scholar]
  5. Gething M. J., Sambrook J. 1982; Construction of influenza haemagglutinin genes that code for intracellular and secreted forms of the protein. Nature; London: 300598–603
    [Google Scholar]
  6. Hobman T. C., Gillam S. 1989; In vitro and in vivo expression of rubella virus glycoprotein E2: the signal peptide is contained in the C-terminal region of capsid protein. Virology 173:241–250
    [Google Scholar]
  7. Hobman T. C., Shukin R., Gillam S. 1988; Translocation of rubella virus glycoprotein E1 into the endoplasmic reticulum. Journal of Virology 62:4259–4264
    [Google Scholar]
  8. Jabbar M. A., Nayak D. P. 1987; Signal processing, glycosylation, and secretion of mutant hemagglutinins of human influenza virus by Saccharomyces cerevisiae . Molecular and Cellular Biology 7:1476–1485
    [Google Scholar]
  9. Jarvis D. L., Summers M. D. 1989; Glycosylation and secretion of human tissue plasminogen activator in recombinant baculovirus- infected insect cells. Molecular and Cellular Biology 9:214–223
    [Google Scholar]
  10. Kalkkinen N., Oker-Blom C., Pettersson R. F. 1984; Three genes code for rubella virus structural proteins E1, E2a, E2b and C. Journal of General Virology 65:1549–1557
    [Google Scholar]
  11. Kessler S. W. 1975; Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. Journal of Immunology 115:1617–1624
    [Google Scholar]
  12. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  13. Luckow V. A., Summers M. D. 1988; Trends in the development of baculovirus expression vectors. Bio/Technology 6:47–55
    [Google Scholar]
  14. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  15. Nakhasi H. L., Meyer B. C., Liu T.-Y. 1986; Rubella virus cDNA. Sequence and expression of El envelope protein. Journal of Biological Chemistry 261:16616–16621
    [Google Scholar]
  16. Oker-Blom C. 1984; The gene order for rubella virus structural proteins is: NH2-C-E2-E1-COOH. Journal of Virology 51:354–358
    [Google Scholar]
  17. Oker-Blom C., Summers M. D. 1989; Expression of Sindbis virus 26S cDNA in Spodoptera frugiperda (Sf9) cells using a baculovirus expression vector. Journal of Viralogy 63:1256–1264
    [Google Scholar]
  18. Oker-Blom C., Kalkkinen N., Kääriäinen L., Pettersson R. F. 1983; Rubella virus contains one capsid protein and three envelope glycoproteins, E1, E2a and E2b. Journal of Virology 46:964–973
    [Google Scholar]
  19. Oker-Blom C., Pettersson R. F., Summers M. D. 1989; Baculovirus polyhedrin promoter-directed expression of rubella virus envelope glycoproteins, E1 and E2, in Spodoptera frugiperda cells. Virology 172:82–91
    [Google Scholar]
  20. Oker-Blom C., Ulmanen I., Kääriäinen L., Pettersson R. F. 1984; Rubella virus 40S genome RNA specifies a 24S mRNA that codes for a precursor to structural proteins. Journal of Virology 49:403–408
    [Google Scholar]
  21. Perlman D., Halvarson H. O. 1983; A putative signal peptidase recognition site and sequence in eucaryotic and procaryotic signal peptides. Journal of Molecular Biology 167:391–409
    [Google Scholar]
  22. Pettersson R. F., Oker-Blom C., Kalkkinen N., Kallio A., Ulmanen I., Kääriäinen L., Partanen P., Vaheri A. 1985; Molecular and antigenic characteristics and synthesis of rubella virus structural proteins. Reviews of Infectious Diseases 7: supplement 1 140–149
    [Google Scholar]
  23. Porterfield J. S., Casals J., Chumakov M. P., Gaidamovich S. Y., Hannoun C., Holmes I. H., Horzinek M. C., Mussgay M., Oker-Blom N., Russell P. K., Trent D. W. 1978; Togaviridae. Intervirology 9:129–148
    [Google Scholar]
  24. Schlesinger S., Schlesinger M. J. 1986 The Togaviridae and Flaviviridae New York: Plenum Press;
    [Google Scholar]
  25. Sekikiwa K., Lai C. J. 1983; Defects in functional expression of an influenza virus hemagglutinin lacking the signal peptide sequences. Proceedings of the National Academy of Sciences, U.S.A 80:3563–3567
    [Google Scholar]
  26. Summers M. D., Smith G. E. 1987 A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures Texas Agricultural Experiment Station Bulletin 1555
    [Google Scholar]
  27. Takkinen K., Vidgren G., Ekstrand H., Hellman U., Kalkkinen N., Wernstedt C., Pettersson R. F. 1988; Nucleotide sequence of the rubella virus capsid protein gene reveals an unusually high G/C content. Journal of General Virology 69:603–612
    [Google Scholar]
  28. Tarentino A. L., Maley F. 1974; Purification and properties of an endo-β-N-acetylglucosaminidase from Streptomyces griseus . Journal of Biological Chemistry 249:811–817
    [Google Scholar]
  29. Toivonen V., Vainionpää R., Salmi A., Hyypiä T. 1983; Glycopolypeptides of rubella virus. Archives of Virology 77:91–95
    [Google Scholar]
  30. Vidgren G., Takkinen K., Kalkkinen N., Kääriäinen L., Pettersson R. F. 1987; Nucleotide sequence of the genes coding for the membrane glycoproteins E1 and E2 of rubella virus. Journal of General Virology 68:2347–2357
    [Google Scholar]
  31. von Heijne G. 1984; How signal sequences maintain cleavage specificity. Journal of Molecular Biology 173:243–251
    [Google Scholar]
  32. Walter P., Lingappa V. R. 1986; Mechanism of protein translocation across the endoplasmic reticulum membrane. Annual Reviews of Cell Biology 2:499–516
    [Google Scholar]
  33. Walter P., Gilmore R., Blobel G. 1984; Protein translocation across the endoplasmic reticulum. Cell 38:5–8
    [Google Scholar]
  34. Waxham M. N., Wolinsky J. S. 1983; Immunochemical identification of rubella virus hemagglutinin. Virology 126:194–203
    [Google Scholar]
  35. Wickner W. T., Lodish H. F. 1985; Multiple mechanisms of protein insertion into and across membranes. Science 230:400–407
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-12-3047
Loading
/content/journal/jgv/10.1099/0022-1317-71-12-3047
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error