Herpesviral Deoxythymidine Kinases Contain a Site Analogous to the Phosphoryl-binding Arginine-rich Region of Porcine Adenylate Kinase; Comparison of Secondary Structure Predictions and Conservation Free

Abstract

Twelve herpesviral deoxythymidine kinases were examined for regions of sequence similarity by multiple alignment. Six highly conserved sites were observed. Site 1 corresponded to a glycine-rich loop that forms part of the ATP-binding pocket in porcine adenylate kinase (PAK), and site 5 corresponded to a region in PAK, located on one lobe of the cleft, that contains arginine residues that bind substrate phosphoryl groups. Site 3, consisting of the motif -DRH-, is thought to be involved in thymine/deoxythymidine recognition; site 4, which is nearby, probably participates in this function as well. The functions of sites 2 and 6 have not been identified. Secondary structure predictions were made by the Gamier method and averaged for each position in the multiple alignment. The structure predicted for all six sites was typically a short flexible region (turn or coil) at or adjacent to the site, flanked by rigid structures (helix or sheet) on either side.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-12-2979
1990-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/12/JV0710122979.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-12-2979&mimeType=html&fmt=ahah

References

  1. Anderson C. M., Zucker F. H., Steitz T. A. 1979; Space-filling models of kinase clefts and conformation changes. Science 204:375–380
    [Google Scholar]
  2. Arnold J. R. P., Cheng M. S., Cullis P. M., Lowe G. 1986; The stereochemical course of phosphoryl transfer catalyzed by herpes simplex virus type 1-induced thymidine kinase. Journal of Biological Chemistry 261:1985–1987
    [Google Scholar]
  3. Aswell J. F., Allen G. P., Jamieson A. T., Campbell D. E., Gentry G. A. 1977; Antiviral activity of arabinosylthymine in herpesviral replication: mechanism of action in vivoand in vitro . Antimicrobial Agents and Chemotherapy 12:243–254
    [Google Scholar]
  4. Ayisi N. K., DeClercq E., Wall R. A., Hughes H., Sacks S. L. 1984; Metabolic fate of (E)-5-(2-bromovinyl)-2ʹ-deoxyuridine in herpes simplex virus- and mock-infected cells. Antimicrobial Agents and Chemotherapy 26:762–765
    [Google Scholar]
  5. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature; London: 310207–211
    [Google Scholar]
  6. Berger A., Schiltz E., Schulz G. E. 1989; Guanylate kinase from Saccharomyces cerevisiae . European Journal of Biochemistry 184:433–443
    [Google Scholar]
  7. Brenner S. 1987; Phosphotransferase sequence homology. Nature; London: 32921
    [Google Scholar]
  8. Chen M. S., Prusoff W. H. 1978; Association of thymidylate kinase activity with pyrimidine deoxyribonucleoside kinase induced by herpes simplex virus. Journal of Biological Chemistry 253:1325–1327
    [Google Scholar]
  9. Chou P. Y., Fasman G. D. 1974; Prediction of protein conformation. Biochemistry 13:222–245
    [Google Scholar]
  10. Coen D. M., Irmiere A. F., Jacobson J. G., Kerns K. M. 1989; Low levels of the herpes simplex virus thymidine-thymidylate kinase are not limiting for sensitivity to certain antiviral drugs or for latency in a mouse model. Virology 168:221–231
    [Google Scholar]
  11. Darby G., Larder B. A., Inglis M. M. 1986; Evidence that the ‘active centre’ of herpes simplex virus thymidine kinase involves an interaction between three distinct regions of the polypeptide. Journal of General Virology 67:753–758
    [Google Scholar]
  12. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  13. Dever T. E., Glynias M. J., Merrick W. C. 1987; GTP-binding domain: three consensus sequence elements with distinct spacing. Proceedings of the National Academy of Sciences U.S.A.: 841814–1818
    [Google Scholar]
  14. Dreusike D., Karplus P. A., Schulz G. E. 1990; Refined structure of porcine cytosolic adenylate kinase at 2·1 Å resolution. Journal of Molecular Biology 99:359–371
    [Google Scholar]
  15. Feng D.-F., Doolittle R. F. 1987; Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution 25:351–360
    [Google Scholar]
  16. Folkers G., Krickl S., Trumpp S. 1989a; Lokalisierung der fur die Bindung von antiviralen Wirkstoffen essentiellen Strukturber-eiche in Thymidinkinasen durch Sequenzhomologiestudien. Archives of Pharmacology (Weinheim) 322:409–413
    [Google Scholar]
  17. Folkers G., Sakahara K., Schwöbel W., Eger K. 1989b; Zur Entwicklung eines Pharmakomodells für thymidinkinaseabhängige, nukleosidanaloge Virostatika. Archives of Pharmacology (Weinheim) 322:395–398
    [Google Scholar]
  18. Fry D. C., Kuby S. A., Mildvan A. S. 1986; ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, Fl-ATPase, and other nucleotide-binding proteins. Proceedings of the National Academy of Sciences U.S.A.: 83907–911
    [Google Scholar]
  19. Fyfe J. A. 1982; Differential phosphorylation of (E)-5-(2-bromo-vinyl)-2ʹ-deoxyuridine monophosphate by thymidylate kinases from herpes simplex viruses types 1 and 2 and varicella zoster virus. Molecular Pharmacology 21:432–437
    [Google Scholar]
  20. Garnier J., Osguthorpe D. J., Robson B. 1978; Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of Molecular Biology 120:97–120
    [Google Scholar]
  21. Gentry G. A. 1985; Locating a nucleotide-binding site in the thymidine kinase of vaccinia virus and of herpes simplex virus by scoring triply aligned protein sequences. Proceedings of the National Academy of Sciences U.S.A.: 826815–6819
    [Google Scholar]
  22. Gentry G. A., Allen G. P., Holton R., Nevins R. B., McGowan J. J., Veerisetty V. 1983; Thymine salvage, mitochondria, and the evolution of the herpesviruses. Intervirology 19:67–76
    [Google Scholar]
  23. Gentry G. A., Lowe M., Alford G., Nevins R. 1988; Sequence analyses of herpesviral enzymes suggest an ancient origin for human sexual behavior. Proceedings of the National Academy of Sciences U.S.A.: 852658–2661
    [Google Scholar]
  24. Griffin A. M., Boursnell M. E. G. 1990; Analysis of the nucleotide sequence of DNA from the region of the thymidine kinase gene of infectious laryngotracheitis virus: potential evolutionary relationships between the herpesvirus subfamilies. Journal of General Virology 71:841–850
    [Google Scholar]
  25. Honess R. W., Craxton M. A., Williams L, Gompels U. A. 1989; A comparative analysis of the sequence of the thymidine kinase gene of a gammaherpesvirus, herpesvirus saimiri. Journal of General Virology 70:3003–3013
    [Google Scholar]
  26. Inglis M. M., Darby G. 1987; Analysis of the role of the cysteine 171 residue in the activity of herpes simplex virus type 1 thymidine kinase by oligonucleotide-directed mutagenesis. Journal of General Virology 68:39–46
    [Google Scholar]
  27. Irmiere A. F., Manos M. M., Jacobson J. J., Gibbs J. S., Coen D. M. 1989; Effect of an amber mutation in the herpes simplex virus thymidine kinase gene on polypeptide synthesis and stability. Virology 168:210–220
    [Google Scholar]
  28. Jamieson A. T., Gentry G. A., Subak-Sharpe J. H. 1974; Induction of both thymidine and deoxycytidine kinase activity by herpes viruses. Journal of General Virology 24:465–480
    [Google Scholar]
  29. Jong A. Y. S., Kuo C.-L., Campbell J. L. 1984; The CDC8 gene of yeast encodes thymidylate kinase. Journal of Biological Chemistry 259:11052–11069
    [Google Scholar]
  30. Kit M., Kit S. 1985; Modified live pseudorabies viruses. U.S. Patent4514497
    [Google Scholar]
  31. Kit S. 1985; Thymidine kinase. Microbiological Science 2:369–374
    [Google Scholar]
  32. Kit S., Sheppard M., Ichimura H., Nusinoff-Lehrman S., Ellis M. N., Fyfe J. A., Otsuka H. 1987; Nucleotide sequence changes in thymidine kinase gene of herpes simplex virus type 2 clones from an isolate of a patient treated with acyclovir. Antimicrobial Agents and Chemotherapy 31:1483–1490
    [Google Scholar]
  33. Larder B. A., Cheng Y.-C., Darby G. 1983a; Characterization of abnormal thymidine kinases induced by drug-resistant strains of herpes simplex virus type 1. Journal of General Virology 64:523–532
    [Google Scholar]
  34. Larder B. A., Derse D., Cheng Y.-C., Darby G. 1983b; Properties of purified enzymes induced by pathogenic drug-resistant mutants of herpes simplex virus. Journal of Biological Chemistry 258:2027–2033
    [Google Scholar]
  35. Liu Q., Summers W. C. 1988; Site-directed mutagenesis of a nucleotide-binding domain in HSV-1 thymidine kinase: effects on catalytic activity. Virology 163:638–642
    [Google Scholar]
  36. Martin S. L., Aparisio D. I., Bandyopadhyay P. K. 1989; Genetic and biochemical characterization of the thymidine kinase gene from herpesviruses of turkeys. Journal of Virology 63:2847–2852
    [Google Scholar]
  37. Mittal S. K., Field H. J. 1989; Analysis of the bovine herpesvirus type 1 thymidine kinase (TK) gene from wild-type virus and TK-deficie. Journal of General Virology 70:901–918
    [Google Scholar]
  38. Needleman S. B., Wunsch C. D. 1970; A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48:443–453
    [Google Scholar]
  39. Nunberg J. H., Wright D. K., Cole G. E., Petrovskis E. A., Post L. E., Compton T., Gilbert J. H. 1989; Identification of the thymidine kinase gene of feline herpesvirus: use of degenerate oligonucleotides in the polymerase chain reaction to isolate herpesvirus gene homologs. Journal of Virology 63:3240–3249
    [Google Scholar]
  40. Otsuka H., Kit S. 1984; Nucleotide sequence of the marmoset herpesvirus thymidine kinase gene and predicted amino acid sequence of thymidine kinase polypeptide. Virology 135:316–330
    [Google Scholar]
  41. Pai E. F., Sachsenheimer W., Schirmer R. H., Schulz G. E. 1977; Substrate positions and induced-fit in crystalline adenylate kinase. Journal of Molecular Biology 114:37–45
    [Google Scholar]
  42. Robertson G. R., Whalley J. M. 1988; Evolution of the herpes thymidine kinase: identification and comparison of the equine herpesvirus 1 thymidine kinase gene reveals similarity to a cell-encoded thymidylate kinase. Nucleic Acids Research 16:11303–11317
    [Google Scholar]
  43. Schulz G. E., Muller C. W., Diederichs K. 1990; Induced-fit movements in adenylate kinases. Journal of Molecular Biology 213:627–630
    [Google Scholar]
  44. Scott S. D., Ross N.L.J., Binns M. M. 1989; Nucleotide and predicted amino acid sequences of the Marek’s disease virus and turkey herpesvirus thymidine kinase genes; comparison with thymidine kinase genes of other herpesviruses. Journal of General Virology 70:3055–3065
    [Google Scholar]
  45. Sheppard M., May J. T. 1989; Location and characterization of the bovine herpesvirus type 2 thymidine kinase gene. Journal of General Virology 70:3067–3071
    [Google Scholar]
  46. Smith G. L., De Carlos A., Chan Y. S. 1989; Vaccinia virus encodes a thymidylate kinase gene: sequence and transcriptional mapping. Nucleic Acids Research 17:7581–7590
    [Google Scholar]
  47. Swain M. A., Galloway D. A. 1983; Nucleotide sequence of the herpes simplex virus type 2 thymidine kinase gene. Journal of Virology 46:1045–1050
    [Google Scholar]
  48. Tagaya M., Yagami T., Noumi T., Futai M., Kishi F., Nakazawa A., Fukui T. 1989; Site-directed mutagenesis of Pro-17 located in the glycine-rich region of adenylate kinase. Journal of Biological Chemistry 264:990–994
    [Google Scholar]
  49. Veerisetty V., Gentry G. A. 1985; HSVl-specific thymidylate kinase activity in infected cells. Intervirology 24:42–49
    [Google Scholar]
  50. Veerisetty V., Balasubramaniam N. K., Gentry G. A. 1990; Equine herpes virus 1 and pseudorabies virus resistance to 2ʹ-fluoropyrimidine analogs and to bromodeoxyuridine: implications for dTMP kinase activity. Acta virologica in press
    [Google Scholar]
  51. Wagner M. J., Sharp J. A., Summers W. C. 1981; Nucleotide sequence of the thymidine kinase gene of herpes simplex virus type 1. Proceedings of the National Academy of Sciences U.S.A: 781441–1445
    [Google Scholar]
  52. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the alpha- and beta- subunits of ATP synthase, myosin, kinases, and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO Journal 1:945–951
    [Google Scholar]
  53. Yan H., Shi Z., Tsai M.-D. 1990; Mechanism of adenylate kinase. Structural and functional demonstration of arginine-138 as a key catalytic residue that cannot be replaced by lysine. Biochemistry 29:6385–6392
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-12-2979
Loading
/content/journal/jgv/10.1099/0022-1317-71-12-2979
Loading

Data & Media loading...

Most cited Most Cited RSS feed