1887

Abstract

Herpes simplex virus type 1 (HSV-1) encodes a novel enzyme activity, the alkaline nuclease, whose precise role in the viral replication cycle remains obscure. The alkaline nuclease gene corresponds to the UL12 open reading frame, which is predicted to encode a protein of 626 amino acid residues. We describe the isolation and characterization of a null mutant of the gene for the viral alkaline nuclease in which 917 bp from the N- terminal half of the gene (corresponding to residues 70 to 375) were deleted and replaced by the insertional mutagen ICP6::. The resulting mutant virus, AN- 1, was propagated in helper cells (S22) which express the wild-type version of the alkaline nuclease gene. Mutant AN-1 growth in Vero cells is severely restricted, although small amounts of infectious virus are produced. On the other hand, wild-type levels of viral DNA and late viral proteins are expressed in virus AN- 1-infected Vero cells. These results indicate that the HSV-1 alkaline nuclease gene product is not essential for viral DNA synthesis but may play a role in the processing or packaging of viral DNA into infectious virions. Possible roles in the viral infectious cycle will be discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-12-2941
1990-12-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/12/JV0710122941.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-12-2941&mimeType=html&fmt=ahah

References

  1. Amundsen S. K., Parris D. S. 1984; Detection of herpes simplex virus intertypic recombinant genomes in infected cell DNA. Journal of Virological Methods 8:19–25
    [Google Scholar]
  2. Aron G. M., Purifoy D. J. M., Schaffer P. A. 1975; DNA synthesis and DNA polymerase activity of herpes simplex virus type 1 temperature-sensitive mutants. Journal of Virology 16:498–507
    [Google Scholar]
  3. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature; London: 310207–211
    [Google Scholar]
  4. Banks L., Purifoy D. J. M., Hurst P.-F., Killington R. A., Powell K. L. 1983; Herpes simplex virus non-structural proteins. IV. Purification of the virus-induced deoxyribonuclease and characterization of the enzyme using monoclonal antibodies. Journal of General Virology 64:2249–2260
    [Google Scholar]
  5. Banks L. M., Halliburton I. W., Purifoy D. J. M., Killington R. A., Powell K. L. 1985; Studies on the herpes simplex virus alkaline nuclease: detection of type-common and type-specific epitopes on the enzyme. Journal of General Virology 66:1–14
    [Google Scholar]
  6. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  7. Carmichael E. P., Weller S. K. 1989; Herpes simplex virus type 1 DNA synthesis requires the product of the UL8 gene: isolation and characterization of an ICP6::lacZ insertion mutation. Journal of Virology 63:591–599
    [Google Scholar]
  8. Carmichael E. P., Kosovsky M. J., Weller S. K. 1988; Isolation and characterization of herpes simplex virus type 1 host range mutants defective in viral DNA synthesis. Journal of Virology 62:9199
    [Google Scholar]
  9. Chartrand P., Wilkie N. M., Timbury M. C. 1981; Physical mapping of temperature-sensitive mutations of herpes simplex virus type 2 by marker rescue. Journal of General Virology 52:121–133
    [Google Scholar]
  10. Chou J., Roizman B. 1985; Isomerization of herpes simplex virus 1 genome: identification of the cis-acting and recombination sites within the domain of the a sequence. Cell 41:803–811
    [Google Scholar]
  11. Chou J., Roizman B. 1989; Characterization of DNA sequence- common and sequence-specific proteins binding to cis-acting sites for cleavage of the terminal a sequence of the herpes simplex virus 1 genome. Journal of Virology 63:1059–1068
    [Google Scholar]
  12. Costa R. H., Draper K. G., Banks L., Powell K. L., Cohen G., Eisenberg R., Wagner E. K. 1983; High-resolution characterization of herpes simplex virus type 1 transcripts encoding alkaline exonuclease and a 50,000-dalton protein tentatively identified as a capsid protein. Journal of Virology 48:591–603
    [Google Scholar]
  13. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  14. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  15. De Bruyn Kops A., Knipe D. M. 1988; Formation of DNA replication structures in herpes virus-infected cells requires a viral DNA binding protein. Cell 55:857–868
    [Google Scholar]
  16. Deiss L. P., Frenkel N. 1986; Herpes simplex virus amplicon: cleavage of concatemeric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence. Journal of Virology 57:933–941
    [Google Scholar]
  17. Deiss L. P., Chou J., Frenkel N. 1986; Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. Journal of Virology 59:605–618
    [Google Scholar]
  18. Draper K. G., Devi-Rao G., Costa R. H., Blair E. D., Thompson R. L., Wagner E. K. 1986; Characterization of the genes encoding herpes simplex virus type 1 and type 2 alkaline exonucleases and overlapping proteins. Journal of Virology 57:1023–1036
    [Google Scholar]
  19. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  20. Francke B., Garrett B. 1982; The effect of a temperature- sensitive lesion in the alkaline DNase of herpes simplex virus type 2 on the synthesis of viral DNA. Virology 116:116–127
    [Google Scholar]
  21. Francke B., Moss H., Timbury M. C., Hay J. 1978; Alkaline DNase activity in cells infected with a temperature-sensitive mutant of herpes simplex virus type 2. Journal of Virology 26:209–213
    [Google Scholar]
  22. Goldin A. L., Sandri-Goldin R. M., Levine M., Glorioso J. C. 1981; Cloning of herpes simplex virus type 1 sequences representing the whole genome. Journal of Virology 38:50–58
    [Google Scholar]
  23. Goldstein D. J., Weller S. K. 1988a; Herpes simplex virus type 1-induced ribonucleotide reductase activity is dispensable for virus growth and DNA synthesis: isolation and characterization of an ICP6::lacZ insertion mutant. Journal of Virology 62:196–205
    [Google Scholar]
  24. Goldstein D. J., Weller S. K. 1988b; An ICP6::lacZ insertional mutagen is used to demonstrate that the UL52 gene of herpes simplex virus type 1 is required for virus growth and DNA synthesis. Journal of Virology 62:2970–2977
    [Google Scholar]
  25. Hayward G. S., Jacob R. J., Wadsworth S. C., Roizman B. 1975; Anatomy of herpes simplex virus DNA: evidence for four populations of molecules that differ in the relative orientations of their long and short components. Proceedings of the National Academy of Sciences U.S.A.: 724243–1247
    [Google Scholar]
  26. Hoffmann P. J. 1981; Mechanism of degradation of duplex DNA by the DNase induced by herpes simplex virus. Journal of Virology 38:1005–1014
    [Google Scholar]
  27. Hoffmann P. J., Cheng Y.-C. 1978; The deoxyribonuclease induced after infection of KB cells by herpes simplex virus type 1 or type 2.1. Purification and characterization of the enzyme. Journal of Biological Chemistry 253:3557–3562
    [Google Scholar]
  28. Hoffmann P. J., Cheng Y.-C. 1979; DNase induced after infection of KB cells by herpes simplex virus type 1 or type 2. II. Characterization of an associated endonuclease activity. Journal of Virology 32:449–457
    [Google Scholar]
  29. Honess R. W., Buchan A., Halliburton I. W., Watson D. H. 1980; Recombination and linkage between structural and regulatory genes of herpes simplex virus type 1: study of the functional organization of the genome. Journal of Virology 34:716–742
    [Google Scholar]
  30. Keir H. M., Gold E. 1963; Deoxyribonucleic acid nucleotidyltransferase and deoxyribonuclease from cultured cells infected with herpes simplex virus. Biochimica et biophysica acta 72:263–276
    [Google Scholar]
  31. Kemper B., Brown D. T. 1976; Function of gene 49 of bacteriophage T4. II. Analysis of intracellular development and the structure of very fast-sedimenting DNA. Journal of Virology 18:1000–1015
    [Google Scholar]
  32. Kemper B., Janz E. 1976; Function of gene 49 of bacteriophage T4. I. Isolation and biochemical characterization of very fast- sedimenting DNA. Journal of Virology 18:992–999
    [Google Scholar]
  33. Kemper B., Garabett M., Courage U. 1981; Studies onT4-head maturation. 2. Substrate specificity of gene-49-controlled endonuclease. European Journal of Biochemistry 115:133–141
    [Google Scholar]
  34. Knipe D. M. 1989; The role of viral and cellular nuclear proteins in herpes simplex virus replication. Advances In Virus Research 37:85–123
    [Google Scholar]
  35. Ladin B. F., Blankenship M. L., Ben-Porat T. 1980; Replication of herpesvirus DNA. V. Maturation of concatemeric DNA of pseudorabies virus to genome length is related to capsid formation. Journal of Virology 33:1151–1164
    [Google Scholar]
  36. Longmire J. L., Albright K. L., Lewis A. K., Meincke L. J., Hildebrand C. E. 1987; A rapid and simple method for the isolation of high molecular weight cellular and chromosome-specific DNA in solution without the use of organic solvents. Nucleic Acids Research 15:859
    [Google Scholar]
  37. McGeoch D. J., Dolan A., Frame M. C. 1986; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the exonuclease gene and neighboring genes. Nucleic Acids Research 14:3435–3448
    [Google Scholar]
  38. McGeoch D. J., Dalrymple M. A., Dolan A., McNab D., Perry L. J., Taylor P. 1988a; Structures of herpes simplex virus type 1 genes required for replication of virus DNA. Journal of Virology 62:444–453
    [Google Scholar]
  39. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988b; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  40. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: a iMboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Matz B., Subak-Sharpe J. H., Preston V. G. 1983; Physical mapping of temperature-sensitive mutations of herpes simplex virus type 1 using cloned restriction endonuclease fragments. Journal of General Virology 64:2261–2270
    [Google Scholar]
  42. Mocarski E. S., Roizman B. 1982; Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31:89–97
    [Google Scholar]
  43. Mocarski E.S, Deiss L. P., Frenkel N. 1985; Nucleotide sequence and structural features of a novel US-a junction present in a defective herpes simplex virus genome. Journal of Virology 55:140–146
    [Google Scholar]
  44. Morrison J. M., Keir H. M. 1968; A new DNA-exonuclease in cells infected with herpes virus: partial purification and properties of the enzyme. Journal of General Virology 3:337–347
    [Google Scholar]
  45. Moss H. 1986; The herpes simplex virus type 2 alkaline DNase activity is essential for replication and growth. Journal of General Virology 67:1173–1178
    [Google Scholar]
  46. Moss H., Chartrand P., Timbury M. C., Hay J. 1979; Mutants of herpes simplex virus type 2 with temperature-sensitive lesions affecting virion thermostability and DNase activity: identification of the lethal mutation and physical mapping of the nuc- lesion. Journal of Virology 32:140–146
    [Google Scholar]
  47. Nutter L. M., Grill S. P., Cheng Y.-C. 1985; The sources of thymidine nucleotides for virus DNA synthesis in herpes simplex virus type 2-infected cells. Journal of Biological Chemistry 260:13272–13275
    [Google Scholar]
  48. Preston C. M., Cordingley M. G. 1982; mRNA-and DNA- directed synthesis of herpes simplex virus coded exonuclease in Xenopus laevis oocytes. Journal of Virology 43:386–394
    [Google Scholar]
  49. Preston V. G., Coates J. A., Rixon F. J. 1983; Identification and characterization of a herpes simplex virus gene product required for encapsidation of virus DNA. Journal of Virology 45:1056–1064
    [Google Scholar]
  50. Puvion-Dutilleul F., Pichard E. 1986; Viral alkaline nuclease in intranuclear dense bodies induced by herpes simplex infection. Biology of the Cell 58:15–22
    [Google Scholar]
  51. Randall R. E., Dinwoodie N. 1986; Intranuclear localization of herpes simplex virus immediate-early and delayed-early proteins: evidence that ICP 4 is associated with progeny virus DNA. Journal of General Virology 67:2163–2177
    [Google Scholar]
  52. Rixon F. J., Cross A. M., Addison C., Preston V. G. 1988; The products of herpes simplex virus type 1 gene UL26 which are involved in DNA packaging are strongly associated with empty but not with full capsids. Journal of General Virology 69:2879–2891
    [Google Scholar]
  53. Schaffer P. A., Tevethia M. J., Benyesh M. M. 1974; Recombination between temperature-sensitive mutants of herpes simplex virus type 1. Virology 58:219–228
    [Google Scholar]
  54. Schaffer P. A., Carter V. C., Timbury M. C. 1978; Collaborative complementation study of temperature-sensitive mutants of herpes simplex virus types 1 and 2. Journal of Virology 27:490–504
    [Google Scholar]
  55. Sheldrick P., Berthelot N. 1975; Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harbor Symposia on Quantitative Biology 2:667–678
    [Google Scholar]
  56. Sherman G., Bachenheimer S. 1987; DNA processing in temperature-sensitive morphogenic mutants of HSV-1. Virology 158:427–430
    [Google Scholar]
  57. Sherman G., Bachenheimer S. L. 1988; Characterization of intranuclear capsids made by ts morphogenic mutants of HSV-1. Virology 163:471–480
    [Google Scholar]
  58. Spaete R. R., Mocarski E. S. 1985; The a sequence of the cytomegalovirus genome functions as a cleavage/packaging signal for herpes simplex virus defective genomes. Journal of Virology 54:817–824
    [Google Scholar]
  59. Stow N. D., McMonagle E. C., Davison A. J. 1983; Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Research 11:8205–8220
    [Google Scholar]
  60. Strobel-Fidler M., Francke B. 1980; Alkaline deoxyribonuclease induced by herpes simplex virus type 1: composition and properties of the purified enzyme. Virology 103:493–501
    [Google Scholar]
  61. Timbury M. C. 1971; Temperature-sensitive mutants of herpes simplex virus type 2. Journal of General Virology 13:373–376
    [Google Scholar]
  62. Timbury M. C., Subak-Sharpe J. H. 1973; Genetic interactions between temperature-sensitive mutants of types 1 and 2 herpes simplex virus. Journal of General Virology 18:347–357
    [Google Scholar]
  63. Towbin H., Staehelein T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences U.S.A.: 764350–4354
    [Google Scholar]
  64. Varmuza S. L., Smiley J. R. 1985; Signals for site-specific cleavage of HSV DNA: maturation involves two separate cleavage events at sites distal to the recognition sequences. Cell 41:793–802
    [Google Scholar]
  65. Vlazny D. A., Frenkel N. 1981; Replication of herpes simplex virus DNA: localization of replication recognition signals within defective virus genomes. Proceedings of the National Academy of Sciences U.S.A.: 78742–746
    [Google Scholar]
  66. Vlazny D. A., Kwong A., Frenkel N. 1982; Site-specific cleavage/packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full-length viral DNA. Proceedings of the National Academy of Sciences U.S.A: 791423–1427
    [Google Scholar]
  67. Wathen M. W., Hay J. 1984; Physical mapping of the herpes simplex virus type 2 nuc- lesion affecting alkaline exonuclease activity by using herpes simplex virus type 1 deletion clones. Journal of Virology 51:237–241
    [Google Scholar]
  68. Weber P. C., Challberg M. D., Nelson N. J., Levine M., Glorioso J. C. 1988; Inversion events in the HSV-1 genome are directly mediated by the viral DNA replication machinery and lack sequence specificity. Cell 54:369–381
    [Google Scholar]
  69. Weller S. K., Aschman D. P., Sacks W. R., Coen D. M., Schaffer P. A. 1983; Genetic analysis of temperature-sensitive mutants of HSV-1: the combined use of complementation and physical mapping for cistron assignment. Virology 130:290–305
    [Google Scholar]
  70. Weller S. K., Carmichael E. P., Aschman D. P., Goldstein D. J., Schaffer P. A. 1987; Genetic and phenotypic characterization of mutants in four essential genes that map to the left half of HSV-1 U L DNA. Virology 161:198–210
    [Google Scholar]
  71. Wu C. A., Nelson N. J., McGeoch D. J., Challberg M. D. 1988; Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. Journal of Virology 62:435–443
    [Google Scholar]
  72. Zku L., Weller S. K. 1988; UL5, a protein required for HSV DNA synthesis: genetic analysis, overexpression in Escherichia coli and generation of polyclonal antibodies. Virology 166:366–378
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-12-2941
Loading
/content/journal/jgv/10.1099/0022-1317-71-12-2941
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error