1887

Abstract

Antibodies raised to an overlapping series of peptides following the amino acid sequence of the external envelope glycoprotein (gpl20) of human immunodeficiency virus type 1 (HIV-1) recognize eight regions in recombinant gpl20 molecules. If the recombinant molecules are glycosylated, three of these regions show a reduced capacity to bind antibody. Of the other five regions, two are strain-specific and carbohydrate restricts antibody binding to their N-terminal flanks, and three can be recognized by antibodies in recombinant gpl20 from an unrelated strain of HIV-1. Antibodies in sera from HIV-l-infected patients bind at high levels to peptides from five regions of gpl20. Of these regions, two coincide with those recognized by antibodies raised to peptides. Four of the five epitopes recognized by the rat antipeptide sera whose ability to bind antibody is influenced most by glycosylation, and three of the five regions which induce high levels of antibodies in patients’ sera, contain putative glycosylation sites which are variable between strains of HIV-1. Such sites flank the putative neutralization and CD4-binding regions of gpl20. It is suggested that changes in the number and position of carbohydrate moieties following mutation can alternately mask and reveal epitopes. Masking an epitope can render a virus resistant to neutralization, whereas virus which binds antibody without being neutralized is able to gain entry to cells bearing antibody and complement receptors. Changes in the glycosylation pattern of gpl20 may therefore contribute to the control of HIV-1 spread within its host.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-12-2889
1990-12-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/12/JV0710122889.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-12-2889&mimeType=html&fmt=ahah

References

  1. Alexander S., Elder J. H. 1984; Carbohydrate dramatically influences immune reactivity of antisera to viral glycoprotein antigens. Science 226:1328–1330
    [Google Scholar]
  2. Alizon M., Wain-Hobson S., Montagnier L., Sonigo P. 1986; Genetic variability of the AIDS virus: nucleotide sequence analysis of two isolates from African patients. Cell 46:63–74
    [Google Scholar]
  3. Atherton E., Logan C. J., Sheppard R. C. 1981; Peptide synthesis. Part 2. Procedures for solid-phase synthesis using Na-fluorenylmethoxycarbonyl amino acids on polyamide supports. Journal of the Chemical Society Perkin Transactions 1:538–545
    [Google Scholar]
  4. Berman P. W., Gregory T. J., Riddle L., Nakamura G. R., Champe M. A., Porter J. P., Wurm F. M., Hershberg R. D., Cobb E. K., Eichberg J. W. 1990; Protection of chimpanzees from infection by HIV-1 after vaccination with recombinant glycoprotein gpl20 but not gpl60. Nature; London: 345622–625
    [Google Scholar]
  5. Cheng-Mayer C., Levy J. 1988; Distinct biological and serological properties of human immunodeficiency viruses from the brain. Annals of Neurology 23:S58–S61
    [Google Scholar]
  6. Davis D., Chaudhri B., Stephens D. M., Carne C. A., Willers C., Lachmann P. J. 1990; The immunodominance of epitopes within the transmembrane protein (gp41) of human immunodeficiency virus type 1 may be determined by the host’s previous exposure to similar epitopes on unrelated antigens. Journal of General Virology 71:1975–1983
    [Google Scholar]
  7. Desai S. M., Kalyanaraman V. S., Casey J. M., Srinivasan A., Andersen P. R., Devare S. G. 1986; Molecular cloning and primary nucleotide sequence analysis of a distinct human immunodeficiency virus isolate reveal significant divergence in its genomic sequences. Proceedings of the National Academy of Sciences U.S.A.: 838380–8384
    [Google Scholar]
  8. Fennie C., Lasky L. A. 1989; Model for intracellular folding of the human immunodeficiency virus type 1 gpl20. Journal of Virology 63:639–646
    [Google Scholar]
  9. Fenouillet E., Clerget-Raslain B., Gluckman J. C., Guetard D., Montagnier L., Bahraoui E. 1989; Role of IV-linked glycans in the interaction between the envelope glycoprotein of human immunodeficiency virus and its CD4 cellular receptor. Structural enzymatic analysis. Journal of Experimental Medicine 169:807–822
    [Google Scholar]
  10. Geysen H. M., Rodda S. J., Mason T. J., Tribbick G., Schoofs P. G. 1987; Strategies for epitope analysis using peptide synthesis. Journal of Immunological Methods 102:259–274
    [Google Scholar]
  11. Hahn B. H., Shaw G. M., Taylor M. E., Redfield R. R., Markham P. D., Salahuddin S. Z., Wong-Staal F., Gallo R. C., Parks E. S., Parks W. P. 1986; Genetic variation in HTLV-III/LAV over time in patients with AIDS or at risk for AIDS. Science 232:1548–1553
    [Google Scholar]
  12. Haigwood N. L., Barker C. B., Higgins K. W., Skiles P. V., Moore G. K., Mann K. A., Lee D. R., Eichberg J. W., Steimer K. S. 1990; Evidence for neutralizing antibodies directed against conformational epitopes of HIV-1 gpl20. In Vaccines ‘90 pp 313–320 Brown F., Chanock R. M., Ginsberg H., Lerner R. A. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  13. Homsy J., Tateno M., Levy J. A. 1988; Antibody-dependent enhancement of HIV infection. Lancet i:1285–1286
    [Google Scholar]
  14. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences U.S.A.: 783824–3828
    [Google Scholar]
  15. Javaherian K., Langlois A. J., McDanal C., Ross K. L., Eckler L. I., Jellis C. L., Profy A. T., Rusche J. R., Bolognesi D. P., Putney S., Matthews T. J. 1989; Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. Proceedings of the National Academy of Sciences U.S.A.: 866768–6772
    [Google Scholar]
  16. Kowalski M., Potz J., Basiripour L., Dorfman T., Goh W. C., Terwilliger E., Dayton A., Rosen C., Haseltine W., Sodroski J. 1987; Functional regions of the envelope glycoprotein of human immunodeficiency virus type 1. Science 237:1351–1355
    [Google Scholar]
  17. Lasky L. A., Nakamura G., Smith D. H., Fennie C., Shimasaki C., Berman P., Gregory T., Capon D. J. 1987; Delineation of a region of the human immunodeficiency virus type 1 gpl20 glycoprotein critical for interaction with the CD4 receptor. Cell 50:975–985
    [Google Scholar]
  18. Levy J. A., Hoffman A. D., Kramer S. M., Landis J. A., Shimabukuro J. M., Oshiro L. S. 1984; Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225:840–842
    [Google Scholar]
  19. McKeating J. A., Gow J., Goudsmit J., Pearl L. H., Mulder C., Weiss R. A. 1989; Characterization of HIV-1 neutralization escape mutants. AIDS 3:777–784
    [Google Scholar]
  20. Mathiesen T., Broliden P.-A., Rosen J., Wahren B. 1989; Mapping of IgG subclass and T-cell epitopes on HIV proteins by synthetic peptides. Immunology 67:453–159
    [Google Scholar]
  21. Matthews T. J., Weinhold K. J., Lyerly H. K., Langlois A. J., Wigzell H., Bolognesi D. P. 1987; Interaction between the human T-cell lymphotropic virus type IIIB envelope glycoprotein gpl20 and the surface antigen CD4: role of carbohydrate in binding and cell fusion. Proceedings of the National Academy of Sciences U.S.A.: 845424–5428
    [Google Scholar]
  22. Meloen R. H., Liskamp R. M., Goudsmit J. 1989; Specificity and function of the individual amino acids of an important determinant of human immunodeficiency virus type 1 that induces neutralizing activity. Journal of General Virology 70:1505–1512
    [Google Scholar]
  23. Modrow S., Hahn B. H., Shaw G. M., Gallo R. C., Wong-Staal F., Wolf H. 1987; Computer-assisted analysis of envelope protein sequences of seven human immunodeficiency virus isolates: prediction of antigenic epitopes in conserved and variable regions. Journal of Virology 61:570–578
    [Google Scholar]
  24. Montelaro R. C., Issel C. J., Payne S., Salinovich O. 1986; Antigenic variation during persistent infections by equine infectious anaemia virus. In Antigenic Variation in Infectious Diseases pp 41–56 Birkbeck T. H., Penn C. W. Edited by Oxford & Washington, D.C: IRL Press;
    [Google Scholar]
  25. Nara P. L., Smit L., Dunlop N., Hatch W., Merges M., Waters D., Gallo R. C., Fischinger P. J., Goudsmit J. 1990; Emergence of viruses resistant to neutralization by V3- specific antibodies in experimental human immunodeficiency virus type 1 IIIB infection of chimpanzees. Journal of Virology 64:3779–3791
    [Google Scholar]
  26. Narayan O., Clements J. E., Kennedy-Stoskopf S., Royal W. 1986; Antigenic variation in the lentiviruses that cause visna-maedi in sheep and arthritis-encephalitis in goats. In Antigenic Variation in Infectious Diseases pp 25–40 Birkbeck T. H., Penn C. W. Edited by Oxford & Washington, D.C: IRL Press;
    [Google Scholar]
  27. Narayan O., Kennedy-Stoskopf S., Zink M. C. 1988; Lentivirus-host interactions: lessons from visna and caprine arthritis-encephalitis viruses. Annals of Neurology 23:S95–S100
    [Google Scholar]
  28. Neurath A. R., Strick N., Lee E. S. Y. 1990; B cell epitope mapping of human immunodeficiency virus envelope glycoproteins with long (19- to 36-residue) synthetic peptides. Journal of General Virology 71:85–95
    [Google Scholar]
  29. Palker T. J., Matthews T. J., Clark M. E., Cianciolo G. J., Randall R. R., Langlois A. F., White G. C., Safai B., Snyderman R., Bolognesi D. P., Haynes B. F. 1987; A conserved region at the COOH terminus of human immunodefi-ciency virus gpl20 envelope protein contains an immunodominant epitope. Proceedings of the National Academy of Sciences U.S.A.: 842479–2483
    [Google Scholar]
  30. Prince A. H., Horowitz B., Baker L., Shulman R. W., Ralph H., Valinsky J., Cundell A., Bratman B., Boehle W., Rey F., Piet M., Reesink H., Lelie N., Tersmette M., Miedema F., Barbosa L., Nemo G., La Nasta C. L., Allan J. S., Lee D. R., Eichberg J. W. 1988; Failure of a human immunodeficiency virus (HIV) immune globulin to protect chimpanzees against experimental challenge with HIV. Proceedings of the National Academy of Sciences U.S.A.: 536844–6848
    [Google Scholar]
  31. Putney S. D., Matthews T. J., Robey W. G., Lynn D. L., Robert-Guroff M., Mueller W. T., Langlois A. J., Ghrayeb J., Petteway S. R.Jr Weinhold K. J., Fischinger P. J., Wong-Staal F., Gallo R. C., Bolognesi D. P. 1986; HTLV-II/LAV- neutralizing antibodies to an E.coli-produced fragment of the virus envelope. Science 234:1392–1395
    [Google Scholar]
  32. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski A., Whitehorn E. A., Baumeister K., Ivanoff L., Petteway S. R., Pearson M. L., Lautenburger J. A., Papas T. S., Ghrayeb J., Chang N. T., Gallo R. C., Wong-Staal F. 1985; Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature; London: 313277–284
    [Google Scholar]
  33. Sanchez-Pescador R., Power M. D., Barr B. J., Steimer K. S., Stempien M. M., Brown-Shimer S. L., Gee W. W., Renard A., Randolph A., Levy J. A., Dina D., Luciw P. A. 1985; Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science 227:484–492
    [Google Scholar]
  34. Sauermann U., Schneider J., Mous J., Brunckhorst U., Schedel I., Jentsch K. D., Hunsmann G. 1990; Molecular cloning and characterization of a German HIV-1 isolate. AIDS Research and Human Retroviruses 6:813–823
    [Google Scholar]
  35. Skehel J. J., Stephens D. J., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wiley D. C. 1984; A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proceedings of the National Academy of Sciences U.S.A.: 811779–1783
    [Google Scholar]
  36. Starcich B. R., Hahn B. H., Shaw G. M., McNeely P. D., Modrow S., Wolfe H., Parks E. S., Parks W. P., Josephs S. F., Gallo R., Wong-Staal F. 1986; Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS. Cell 45:637–648
    [Google Scholar]
  37. Steimer K. S., Van Nest G., Dina D., Barr P. J., Luciw P. A., Miller E. T. 1987; Genetically engineered human immunodeficiency virus envelope glycoprotein gpl20 produced in yeast is the target of neutralizing antibodies. In Vaccines ’87 pp 236–244 Chanock R. M., Ginsberg H., Lemer R. A., Brown F. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  38. Steimer K. S., Van Nest G. A., Haigwood N. L., Tillson E. M., George-Nascimento C., Barr P. J., Dina D. 1988; Recombinant env and gag polypeptides in characterizing HIV-l-neutralizing antibodies. In Vaccines ’88 pp 347–355 Ginsberg H., Brown F., Lemer R. A., Chanock R. H. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Sun N.-C., Ho D. D., Sun C. R. Y., Liou R.-S., Gordon W., Fung M. S. C., Li X.-L., Ting R. C., Lee T.-H., Chang N. T., Chang T.-W. 1989; Generation and characterization of monoclonal antibodies to the putative CD4-binding domain of human immunodeficiency virus type 1 gpl20. Journal of Virology 63:3579–3585
    [Google Scholar]
  40. Weiss R. A., Clapham P. R., Weber J. N., Dalgleish A. G., Lasky L. A., Berman P. W. 1986; Variable and conserved neutralization antigens of human immunodeficiency virus. Nature; London: 324572–575
    [Google Scholar]
  41. Willey R. L., Rutledge R. A., Dias S., Folks T., Theodore T., Buckler C. E., Martin M. A. 1986; Identification of conserved and divergent domains within the envelope gene of the acquired immunodeficiency syndrome retrovirus. Proceedings of the National Academy of Sciences U.S.A.: 835038–5042
    [Google Scholar]
  42. Willey R. L., Ross E. K., Buckler-White A. J., Theodore T. S., Martin M. A. 1989; Functional interaction of constant and variable domains of human immunodeficiency virus type 1 gpl20. Journal of Virology 63:3595–3600
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-12-2889
Loading
/content/journal/jgv/10.1099/0022-1317-71-12-2889
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error