1887

Abstract

The genome organization of porcine respiratory coronavirus (PRCV), a newly recognized agent which has a close antigenic relationship to the enteropathogenic transmissible gastroenteritis virus (TGEV), was studied. Genomic RNA from cell-cultured PRCV (French isolate RM4) was used to produce cDNA clones covering the genomic 3′ end to the start of the spike (S) glycoprotein gene (7519 nucleotides). Six open reading frames (ORFs) were identified that allowed the translation of three coronavirus structural proteins and three putative non-structural (NS) polypeptides, homologous to TGEV ORFs designated NS3-1, NS4 and NS7. Pairwise alignment of PRCV nucleotide and amino acid sequences with sequence data available for three TGEV strains revealed a 96% overall homology. However, the genome of PRCV exhibited two important distinctive features. The first was that the S gene lacked 672 nucleotides in the 5′ region and encoded a truncated form of the S polypeptide, and secondly, the first NS ORF downstream of the S gene was predicted to be non-functional as a consequence of a double deletion. The significance of genomic deletions with respect to tissue tropism and evolution of coronaviruses is discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-11-2599
1990-11-01
2022-01-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/11/JV0710112599.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-11-2599&mimeType=html&fmt=ahah

References

  1. Britton P., Carmenes R. S., Page K. W., Garwes D. J., Parra F. 1988a; Sequence of the nucleoprotein from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae. Molecular Microbiology 2:89–99
    [Google Scholar]
  2. Britton P., Carmenes R. S., Page K. W., Garwes D. J. 1988b; The integral membrane protein from a virulent isolate of transmis-sible gastroenteritis virus: molecular characterization, sequence and expression in Escherichia coli. Molecular Microbiology 2:497–505
    [Google Scholar]
  3. Britton P., Lopez Otin C., Martin Alonso J. M., Parra F. 1989; Sequence of the coding regions from the 3·0 kb and 3·9 kb mRNA subgenomic species from a virulent isolate of transmissible gastroenteritis virus. Archives of Virology 105:165–178
    [Google Scholar]
  4. Brown I., Cartwright S. 1986; New porcine coronavirus?. Veterinary Record 119:282
    [Google Scholar]
  5. Callebaut P., Correa I., Pensaert M., Jiménez G., Enjuanes L. 1988; Antigenic differentiation between transmissible gastroenteritis virus of swine and a related porcine respiratory coronavirus. Journal of General Virology 69:1725–1730
    [Google Scholar]
  6. Cavanagh D., Brian D. A., Enjuanes L., Holmes K. V., Lai M. M. C., Laude H., Siddell S. G., Spaan W., Tagushi F., Talbot P. J. 1990; Recommendations of the coronavirus study group for the nomenclature of the structural proteins, mRNAs, and genes of coronavirus. Virology 175:306–307
    [Google Scholar]
  7. Dalziel R. G., Lampert P. W., Talbot P. J., Buchmeier M. J. 1986; Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. Journal of Virology 59:463–471
    [Google Scholar]
  8. Delmas B., Gelfi J., Laude H. 1986; Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. Journal of General Virology 67:1405–1418
    [Google Scholar]
  9. Delmas B., Rasschaert D., Godet M., Gelfi J., Laude H. 1990; Four major antigenic sites of the coronavirus transmissible gastroenteritis virus are located on the amino-terminal half of spike glycoprotein S. Journal of General Virology 71:1313–1323
    [Google Scholar]
  10. Duret C., Brun A., Guilmoto H., Dauvergne M. 1988; Isolement, identification et pouvoirpathogene chez le pore d’un coronavirus apparenté au virus de la gastro-entérite transmissible. Recueil de médecine vétérinaire 164:221–226
    [Google Scholar]
  11. Fleming J. O., Trousdale M. D., El-Zaatari F. A. K., Stohlman S. A., Weiner L. P. 1986; Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. Journal of Virology 58:869–875
    [Google Scholar]
  12. Gallagher T. M., Parker S. E., Buchmeier M. J. 1990; Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the amino-terminal half of the spike glycoprotein. Journal of Virology 64:731–741
    [Google Scholar]
  13. Garwes J., Stewart F., Cartwright S. F., Brown I. 1988; Differentiation of porcine coronavirus from transmissible gastroenteritis virus. Veterinary Record 122:86–87
    [Google Scholar]
  14. Have P. 1990; Infection with a new porcine respiratory coronavirus in Denmark.Serologic differentiation from transmissible gastroenteritis virus using monoclonal antibodies. In Coronaviruses and Their Diseases Cavanagh D., Brown T. D. K. Edited by New York & London: Plenum Press; in press
    [Google Scholar]
  15. Jestin A., Le Forban Y., Vannier P., Madec F., Gourreau J.-M. 1987; Un nouveau coronavirus porcin. Etudes séro-épi-démiologiques rétrospectives dans les élevages de Bretagne. Recueil de médecine vétérinaire 163:567–571
    [Google Scholar]
  16. Kapke P. A., Tung F. Y. T., Brian D. A. 1988; Nucleotide sequence between the peplomer and matrix protein genes of the porcine transmissible gastroenteritis coronavirus identifies three large open reading frames. Virus Genes 2:293–294
    [Google Scholar]
  17. Laude H., Chapsal J.-M., Gelfi J., Labiau S., Grosclaude J. 1986; Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. Journal of General Virology 67:119–130
    [Google Scholar]
  18. Laude H., Rasschaert D., Huet J.-C. 1987; Sequence and N-terminal processing of the transmembrane protein E1 of the coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1687–1693
    [Google Scholar]
  19. Laude H., Gelfi J., Rasschaert D., Delmas B. 1988; Caractérisation antigénique du coronavirus respiratoire porcin à l’aide d’anticorps monoclonaux dirigés contre le virus de la gastro-entérite transmissible. Journées de la Recherche Porcine en France 20:89–94
    [Google Scholar]
  20. Lim H. M., Pène J. J. 1988; Optimal conditions for supercoil DNA sequencing with the Escherichia coli DNA polymerase I large fragment. Gene Analysis Techniques 5:32–39
    [Google Scholar]
  21. Luytjes W., Sturman L. S., Bredenbeek P. J., Charite J., van der Zeijst B. A., Horzinek M. C., Spaan W. J. M. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  22. O’Toole D., Brown I., Bridges A., Cartwright S. F. 1989; Pathogenicity of experimental infection with ‘pneumotropic’ porcine coronavirus. Research in Veterinary Science 47:23–29
    [Google Scholar]
  23. Parker S. E., Gallagher T. M., Buchmeier M. J. 1989; Sequence analysis reveals extensive polymorphism and evidence of deletions within the E2 glycoprotein gene of several strains of murine hepatitis virus. Virology 173:664–673
    [Google Scholar]
  24. Pensaert M., Callebaut P., Vergote J. 1986; Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Veterinary Quarterly 8:257–261
    [Google Scholar]
  25. Rasschaert D., Laude H. 1987; The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1883–1890
    [Google Scholar]
  26. Rasschaert D., Gelfi J., Laude H. 1987; Enteric coronavirus TGEV: partial sequence of the genomic RNA, its organization and expression. Biochimie 69:591–600
    [Google Scholar]
  27. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higichi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Schmidt I., Skinner M., Siddell S. 1987; Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. Journal of General Virology 68:47–56
    [Google Scholar]
  30. Spaan W., Cavanagh D., Horzinek M. C. 1988; Coronaviruses: structure and genome expression. Journal of General Virology 69:2939–2952
    [Google Scholar]
  31. Van Nieuwstadt A. P., Pol J. M. A. 1989; Isolation of a TGE virus-related respiratory coronavirus causing fatal pneumonia in pigs. Veterinary Record 124:43–44
    [Google Scholar]
  32. Wesley R. D. 1990; Nucleotide sequence of the E2-peplomer protein gene and partial nucleotide sequence of the upstream polymerase gene of transmissible gastroenteritis virus (Miller strain). In Coronaviruses and Their Diseases Cavanagh D., Brown T. D. K. Edited by New York & London: Plenum Press; in press
    [Google Scholar]
  33. Wesley R. D., Cheung A. K., Michael D. D., Woods R. D. 1989; Nucleotide sequence of coronavirus TGEV genomic RNA; evidence for 3 mRNA species between the peplomer and matrix protein genes. Virus Research 13:87–100
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-11-2599
Loading
/content/journal/jgv/10.1099/0022-1317-71-11-2599
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error