1887

Abstract

The 3C protease of poliovirus is distinguished from that of all other picornaviruses in that it only cleaves at Gln-Gly amino acid pairs within the viral polyprotein. To determine whether this strict cleavage specificity is an intrinsic property of the poliovirus 3C protease, amino acid substitutions were introduced at one of the Gln-Gly cleavage sites. Oligonucleotide-directed site- specific mutagenesis of an infectious poliovirus type 1 (Mahoney strain) cDNA was used to change the Gln-Gly site at the 3C/3D junction of the polyprotein into Gln-Val, Gin-Ala, Gln-Ser or Gin-Pro. The effects of these substitutions were studied after transfection of primate cells by the mutated cDNAs. The Gln-Gly to Gin-Pro substitution was lethal for virus growth, and the corresponding altered 3CD polypeptide expressed in insect cells using a recombinant baculovirus vector did not appear to undergo autocleavage. The Gln-Gly to Gln-Val change was also lethal, although production of virus was occasionally observed as a result of reverse mutations. Mutants with Gin-Ala and Gln-Ser sequences were viable, indicating that these dipeptides can be cleaved by the poliovirus protease . However, processing at the 3C/3D junction occurred relatively inefficiently in the case of the Gln-Ser virus. Furthermore, the Gln-Gly to Gin-Ala substitution seemed to result in an additional cleavage event within the N-terminal part of polypeptide 3D.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-11-2553
1990-11-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/11/JV0710112553.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-11-2553&mimeType=html&fmt=ahah

References

  1. Arnold E., Luo M., Vriend G., Rossmann M. G., Palmenberg A. C., Parks G. D., Nicklin M. J. H., Wimmer E. 1987; Implications of the picomavirus capsid structure for polyprotein processing. Proceedings of the National Academy of Sciences, U.S.A 84:21–25
    [Google Scholar]
  2. Bellocq C., Agut H., van der Werf S., Girard M. 1984; Biochemical characterization of poliovirus type 1 temperature-sensitive mutants. Virology 139:403–407
    [Google Scholar]
  3. Bellocq C., Kean K. M., Fichot O., Girard M., Agut H. 1987; Multiple mutations involved in the phenotype of a temperature-sensitive small-plaque mutant of poliovirus. Virology 157:75–82
    [Google Scholar]
  4. Bernstein H. D., Sonenberg N., Baltimore D. 1985; Poliovirus mutant that does not selectively inhibit host cell protein synthesis. Molecular and Cellular Biology 5:2913–2923
    [Google Scholar]
  5. Bernstein H. D., Sarnow P., Baltimore D. 1986; Genetic complementation among poliovirus mutants derived from an infectious cDNA clone. Journal of Virology 60:1040–1049
    [Google Scholar]
  6. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli . Journal of Molecular Biology 41:459
    [Google Scholar]
  7. Dewalt P. G., Semler B. L. 1987; Site-directed mutagenesis of proteinase 3C results in a poliovirus deficient in synthesis of viral RNA polymerase. Journal of Virology 61:2162–2170
    [Google Scholar]
  8. Dewalt P. G., Semler B. L. 1989; Molecular biology and genetics of poliovirus protein processing. In Molecular Aspects of Picomavirus Infection and Detection pp. 73–93 Semler B. L., Ehrenfeld E. Edited by Washington, D.C: American Society for Microbiology;
    [Google Scholar]
  9. Falk M. M., Grigera P. R., Bergmann I. E., Zibert A., Multhaup G., Beck E. 1990; Foot-and-mouth disease virus protease 3C induces specific proteolytic cleavage of host cell histone H3. Journal of Virology 64:748–756
    [Google Scholar]
  10. Geliebter J., Azeff R., Melvold R. W., Nathenson S. G. 1986; Mitotic recombination in germ cells generated two major histocompatibility complex mutant genes shown to be identical by RNA sequence analysis: Kbm9 and Kbm6 . Proceedings of the National Academy of Sciences, U.S.A 83:3371–3375
    [Google Scholar]
  11. Gorbalenya A., Svitkin Y., Kazachkov Y., Agol V. 1979; Encephalomyocarditis virus-specific polypeptide p22 is involved in the processing of the viral precursor polypeptides. FEBS Letters 108:1–5
    [Google Scholar]
  12. Graham F. L., van der Eb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  13. Hanecak R., Semler B. L., Anderson C. W., Wimmer E. 1982; Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs. Proceedings of the National Academy of Sciences, U.S.A 79:3973–3977
    [Google Scholar]
  14. Hanecak R., Semler B. L., Ariga H., Anderson C. W., Wimmer E. 1984; Expression of a cloned gene segment of poliovirus in E. coli: evidence for autocatalytic production of the viral proteinase. Cell 37:1063–1073
    [Google Scholar]
  15. Ivanoff L. A., Towatari T., Ray J., Korant B. D., Petteway S. R. Jr 1986; Expression and site-specific mutagenesis of the poliovirus 3C protease in Escherichia coli . Proceedings of the National Academy of Sciences, U.S.A 83:5392–5396
    [Google Scholar]
  16. Jackson R. J. 1989; Comparison of encephalomyocarditis virus and poliovirus with respect to translation initiation and processing in vitro . In Molecular Aspects of Picomavirus Infection and Detection pp. 51–71 Semler B. L., Ehrenfeld E. Edited by Washington D.C: American Society for Microbiology;
    [Google Scholar]
  17. Jore J., de Geus B., Jackson R. J., Pouwels P. H., Enger-Valk B. E. 1988; Poliovirus protein 3CD is the active protease for processing of the precursor protein P1 in vitro . Journal of General Virology 69:1627–1636
    [Google Scholar]
  18. Kean K. M., Wychowski C., Kopecka H., Girard M. 1986; Highly infectious plasmids carrying poliovirus cDNA are capable of replication in transfected simian cells. Journal of Virology 59:490–493
    [Google Scholar]
  19. Kean K. M., Agut H., Fichot O., Wimmer E., Girard M. 1988; A poliovirus mutant defective for self-cleavage at the COOH-terminus of the 3C protease exhibits secondary processing defects. Virology 163:330–340
    [Google Scholar]
  20. Kirkegaard K., Nelson B. 1990; Conditional poliovirus mutants made by random deletion mutagenesis of infectious cDNA. Journal of Virology 64:185–194
    [Google Scholar]
  21. Kitamura N., Semler B. L., Rothberg P. G., Larsen G. R., Adler C. J., Dorner A. J., Emini E. A., Hanecak R., Lee J. J., van der Werf S., Anderson C. W., Wimmer E. 1981; Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature; London: 291547–553
    [Google Scholar]
  22. Kräusslich H.-G., Wimmer E. 1988; Viral proteinases. Annual Review of Biochemistry 57:701–754
    [Google Scholar]
  23. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  24. Luckow V. A., Summers M. D. 1988; Trends in the development of baculovirus expression vectors. Bio/Technology 6:47–55
    [Google Scholar]
  25. Luckow V. A., Summers M. D. 1989; High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology 170:31–39
    [Google Scholar]
  26. Maniatis T., Fritsch E. F., Sambrook J. 1982; Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Marc D., Drugeon G., Haenni A.-L., Girard M., van der Werf S. 1989; Role of myristoylation of poliovirus capsid protein VP4 as determined by site-directed mutagenesis of its N-terminal sequence. EMBO Journal 8:2661–2668
    [Google Scholar]
  28. Morinaga Y., Franceschini T., Inouye S., Inouye M. 1984; Improvement of oligonucleotide-directed site-specific mutagenesis using double-stranded plasmid DNA. Bio/Technology 2:636–639
    [Google Scholar]
  29. Oostra B. A., Harvey R., Ely B. K., Markham A. F., Smith A. E. 1983; Transforming activity of polyoma virus middle-T antigen probed by site-directed mutagenesis. Nature; London: 304456–459
    [Google Scholar]
  30. Pallansch M. A., Kew O. M., Semler B. L., Omilianowski D. R., Anderson C. W., Wimmer E., Rueckert R. R. 1984; Protein processing map of poliovirus. Journal of Virology 49:873–880
    [Google Scholar]
  31. Palmenberg A. C., Pallansch M. A., Rueckert R. R. 1979; Protease required for processing picornaviral coat protein resides in the viral replicase gene. Journal of Virology 32:770–778
    [Google Scholar]
  32. Parks G. D., Palmenberg A. C. 1987; Site-specific mutations at a picomavirus VP3/VP1 cleavage site disrupt in vitro processing and assembly of capsid precursors. Journal of Virology 61:3680–3687
    [Google Scholar]
  33. Parks G. D., Baker J. C., Palmenberg A. C. 1989; Proteolytic cleavage of encephalomyocarditis virus capsid region substrates by precursors to the 3C enzyme. Journal of Virology 63:1054–1058
    [Google Scholar]
  34. Racaniello V. R., Baltimore D. 1981; Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214:916–919
    [Google Scholar]
  35. Racaniello V. R., Meriam C. 1986; Poliovirus temperature-sensitive mutant containing a single nucleotide deletion in the 5′-noncoding region of the viral RNA. Virology 155:498–507
    [Google Scholar]
  36. Richards O. C., Ivanoff L. A., Bienkowska-Szewczyk K., Butt B., Petteway S. R. Jr Rothstein M. A., Ehrenfeld E. 1987; Formation of poliovirus RNA polymerase 3D in Escherichia coli by cleavage of fusion proteins expressed from cloned viral cDNA. Virology 161:348–356
    [Google Scholar]
  37. Sarnow P., Bernstein H. D., Baltimore D. 1986; A poliovirus temperature-sensitive RNA synthesis mutant located in a noncoding region of the genome. Proceedings of the National Academy of Sciences, U.S.A 83:571–575
    [Google Scholar]
  38. Semler B. L., Anderson C. W., Hanecak R., Dorner L. F., Wimmer E. 1982; A membrane-associated precursor to poliovirus VPg identified by immunoprecipitation with antibodies directed against a synthetic heptapeptide. Cell 28:405–412
    [Google Scholar]
  39. Semler B. L., Johnson V. H., Dewalt P. D., Ypma-Wong M. F. 1987; Site-specific mutagenesis of cDNA clones expressing a poliovirus proteinase. Journal of Cellular Biochemistry 33:39–51
    [Google Scholar]
  40. Sompayrac L. M., Danna K. J. 1981; Efficient infection of monkey cells with DNA of simian virus 40. Proceedings of the National Academy of Sciences, U.S.A 78:7575–7578
    [Google Scholar]
  41. Summers M. D., Smith G. E. 1987; A manual of methods for baculovirus vectors and insect cell culture procedure. Texas Agricultural Experiment Station Bulletin1555
    [Google Scholar]
  42. Tesar M., Marquardt O. 1990; Foot-and-mouth disease virus protease 3C inhibits cellular transcription and mediates cleavage of histone H3. Virology 174:364–374
    [Google Scholar]
  43. Toyoda H., Nicklin M. J. H., Murray M. G., Anderson C. W., Dunn J. J., Studier F. W., Wimmer E. 1986; A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45:761–770
    [Google Scholar]
  44. Wellink J., van Kammen A. 1988; Proteases involved in the processing of viral polypeptides. Archives of Virology 98:1–26
    [Google Scholar]
  45. Ypma-Wong M. F., Semler B. L. 1987; In vitro molecular genetics as a tool for determining the differential cleavage specificities of the poliovirus 3C proteinase. Nucleic Acids Research 15:2069–2088
    [Google Scholar]
  46. Ypma-Wong M. F., Dewalt P. G., Johnson V. H., Lamb J. G., Semler B. L. 1988; Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166:265–270
    [Google Scholar]
  47. Zagursky R. J., Baumeister K., Lomax N., Berman M. L. 1985; Rapid and easy sequencing of large linear double-stranded DNA and supercoiled plasmid DNA. Gene Analysis Techniques 2:89–94
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-11-2553
Loading
/content/journal/jgv/10.1099/0022-1317-71-11-2553
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error