1887

Abstract

Conclusion

This review illustrates how molecular and structural analyses have contributed to a greater understanding of the rich biological diversity seen in the picornaviruses. In many cases the second phase of studies, based on increasingly powerful genetic engineering, biochemical and immunological techniques is now well under way and beginning to reveal the depth of the vast store of information which still lies encoded cryptically in the sequences and structures which have been determined. The advances made already suggest that the next few years will be even more fruitful than those since 1981 when the first picornavirus sequence was published.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-11-2483
1990-11-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/11/JV0710112483.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-11-2483&mimeType=html&fmt=ahah

References

  1. Abraham G., Colonno R. J. 1984; Many rhinovirus serotypes share the same cellular receptor. Journal of Virology 51:340–345
    [Google Scholar]
  2. Acharya R., Fry E., Stuart D., Fox G., Rowlands D., Brown F. 1989; The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature; London: 337709–716
    [Google Scholar]
  3. AlSaadi S., Hassard S., Stanway G. 1989; Sequences in the 5′ non-coding region of human rhinovirus 14 RNA that affect in vitro translation. Journal of General Virology 70:2799–2804
    [Google Scholar]
  4. Andino R., Rieckhof G. E., Trono D., Baltimore D. 1990; Substitutions in the protease (3Cpro) gene of poliovirus can suppress a mutation in the 5′ noncoding region. Journal of Virology 64:607–612
    [Google Scholar]
  5. Andries K., Dewindt B., Snoeks J., Wouters L., Moereels H., Lewi P. J., Janssen P. A. J. 1990; Two groups of rhinoviruses revealed by a panel of antiviral compounds present sequence divergence and differential pathogenicity. Journal of Virology 64:1117–1123
    [Google Scholar]
  6. Argos P., Kamer G., Nicklin M. J. H., Wimmer E. 1984; Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nucleic Acids Research 12:7251–7267
    [Google Scholar]
  7. Arnold E., Rossmann M. G. 1990; Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3·0 Å. Journal of Molecular Biology 211:763–801
    [Google Scholar]
  8. Arnold E., Luo M., Vriend G., Rossmann M. G., Palmenberg A. C., Parks G. D., Nicklin M. J. H., Wimmer E. 1987; Implications of the picomavirus capsid structure for polyprotein processing. Proceedings of the National Academy of Sciences, U.S.A 84:21–25
    [Google Scholar]
  9. Auvinen P., Hyypiä T. 1990; Echoviruses include genetically distinct serotypes. Journal of General Virology 71:2133–2139
    [Google Scholar]
  10. Auvinen P., Stanway G., Hyypiä T. 1989; Genetic diversity of enterovirus subgroups. Archives of Virology 104:175–186
    [Google Scholar]
  11. Bae Y. S., Eun H. M., Yoon J. W. 1989; Genomic differences between the diabetogenic and nondiabetogenic variants of encepha-lomyocarditis. Virology 170:282–287
    [Google Scholar]
  12. Bazan J. F., Fletterick R. J. 1988; Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proceedings of the National Academy of Sciences, U.S.A 85:7822–7876
    [Google Scholar]
  13. Beck E., Strohmaier K. 1987; Subtyping of European foot-and-mouth disease virus strains by nucleotide sequence determination. Journal of Virology 61:1621–1629
    [Google Scholar]
  14. Beck E., Forss S., Strebel K., Cattaneo R., Feil G. 1983; Structure of the FMDV translation initiation site and of the structural proteins. Nucleic Acids Research 11:7873–7885
    [Google Scholar]
  15. Bienkowska-Szewczyk K., Ehrenfeld E. 1988; An internal 5′ noncoding region required for translation of poliovirus RNA in vitro. Journal of Virology 62:3068–3072
    [Google Scholar]
  16. Borovjagin A. V., Evstafieva A. G., Ugarova T. YU., Shatsky I. N. 1990; A factor that specifically binds to the 5′ untranslated region of encephalomyocarditis virus RNA. FEBS tetters 261:237–240
    [Google Scholar]
  17. Brown A. L., Campbell R. O., Clarke B. E. 1989; The nucleotide sequence of the structural protein-coding region of foot-and-mouth disease virus serotype SAT 3. Gene 75:225–234
    [Google Scholar]
  18. Brown E. A., Jansen R. W., Lemon S. 1989; Characterization of a simian hepatitis A virus (HAV) antigenic and genetic comparison with human HAV. Journal of Virology 63:4932–4937
    [Google Scholar]
  19. Bruce C. B., Al-Nakib W., Tyrrell D. A. J., Almond J. W. 1988; Synthetic oligonucleotides as diagnostic probes for rhinoviruses. Lancet ii:53
    [Google Scholar]
  20. Burke K. L., Dunn G., Ferguson M., Minor P. D., Almond J. W. 1988; Antigen chimaeras of poliovirus as potential new vaccines. Nature; London: 33281–82
    [Google Scholar]
  21. Callahan P., Mizutani S., Colonno R. J. 1985; Molecular cloning and complete sequence determination of human rhinovirus type 14 genome RNA. Proceedings of the National Academy of Sciences, U.S.A 82:732–736
    [Google Scholar]
  22. Calenoff M. A., Faabeg K. A., Lipton H. L. 1990; Genomic regions of neurovirulence and attenuation in Theiler’s murine encephalomyelitis virus. Proceedings of the National Academy of Sciences, U.S.A 87:978–982
    [Google Scholar]
  23. Cammack N., Phillips A., Dunn G., Patel V., Minor P. D. 1988; Intertypic genomic rearrangements of poliovirus strains in vaccinees. Virology 167:507–514
    [Google Scholar]
  24. Cann A. J., Stanway G., Hughes P. J., Minor P. D., Evans D. M. A., Schild G. C., Almond J. W. 1984; Reversion to neurovirulence of the live attenuated Sabin type 3 oral poliovirus vaccine. Nucleic Acids Research 12:7787–7792
    [Google Scholar]
  25. Carroll A. R., Rowlands D. J., Clarke B. E. 1984; The complete nucleotide sequence of the RNA coding for the primary translation products of foot-and-mouth disease virus. Nucleic Acids Research 12:2461–2472
    [Google Scholar]
  26. Cavanagh D., Sangar D. V., Rowlands D. J., Brown F. 1977; Immunogenic and cell attachments site of FMDV: further evidence for their location in a single capsid polypeptide. Journal of General Virology 35:149–158
    [Google Scholar]
  27. Chang K. H., Auvinen P., Hyypiä T., Stanway G. 1989; The nucleotide sequence of coxsackievirus A9; implications for receptor binding and enterovirus classification. Journal of General Virology 70:3269–3280
    [Google Scholar]
  28. Chen G. -F. T., Inouye M. 1990; Suppression of the negative effect of minor arginine codons on gene expression; preferential usage of minor codons within the first 25 codons of the Escherichia coli genes. Nucleic Acids Research 18:1465–1473
    [Google Scholar]
  29. Chow M., Newman J. F. E., Filman D., Hogle J. M., Rowlands D. J., Brown F. 1987; Myristylation of picomavirus capsid protein VP4 and its structural significance. Nature; London: 327482–486
    [Google Scholar]
  30. Clarke B. E., Sanger D. V. 1988; Processing and assembly of foot-and-mouth disease virus proteins using subgenomic RNA. Journal of General Virology 69:2313–2325
    [Google Scholar]
  31. Clarke B. E., Brown A. L., Currey K. M., Newton S. E., Rowlands D. J., Carroll A. R. 1987; Potential secondary and tertiary structure in the genomic RNA of foot and mouth disease virus. Nucleic Acids Research 15:7067–7079
    [Google Scholar]
  32. Cohen J. I., Ticehurst J. R., Purcell R. H., Buckler-White A., Baroudy B. M. 1986; Complete nucleotide sequence of wild-type hepatitis A virus: comparison with different strains of hepatitis A virus and other picornaviruses. Journal of Virology 61:50–59
    [Google Scholar]
  33. Cohen J. I., Rosenblum B., Feinstone S. M., Ticehurst J. R., Purcell R. H. 1989; Attenuation and cell culture adaptation of hepatitis A virus (HAV): a genetic analysis with HAV cDNA. Journal of Virology 63:5364–5370
    [Google Scholar]
  34. Colonno R. J. 1987; Cell surface receptors for picomaviruses. BioEssays 5:270–275
    [Google Scholar]
  35. Colonno R. J., Condra J. H., Mizutani S., Callahan P. L., Davies M. -E., Murcko M. A. 1988; Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proceedings of the National Academy of Sciences, U.S.A 85:5449–5453
    [Google Scholar]
  36. Cooper P. D. 1977; Genetics of picomaviruses. In Comprehensive Virology 9: pp. 133–207 Fraenkel-Conrat H., Wagner R. R. Edited by New York: Plenum Press;
    [Google Scholar]
  37. Cordingley M. G., Register R. B., Callahan P. L., Garsky V. M., Colonno R. J. 1989; Cleavage of small peptides in vitro by human rhinovirus 14 3C protease expressed in Escherichia coli. Journal of Virology 63:5037–5045
    [Google Scholar]
  38. Crowell R. L., Hsu K. -H. L., Schultz M., Landau B. J. 1987; Cellular receptors in coxsackievirus infections. In Positive-strand RNA Viruses, UCLA Symposia on Molecular and Cellular Biology, New Series 54 pp. 453–466 Brinton M. A., Rueckert R. R. Edited by New York: Alan R. Liss;
    [Google Scholar]
  39. Del Angel R. M., Papavassilou A. G., Fernandez-Thomas C., Silverstein S. J., Racaniello V. R. 1989; Cell proteins bind to multiple sites within the 5′ untranslated region of poliovirus RNA. Proceedings of the National Academy of Sciences, U.S.A 86:8299–8303
    [Google Scholar]
  40. De la Torre J. C., Wimmer E., Holland J. J. 1990; Very high frequency of reversion to guanidine resistance in clonal pools of guanidine-dependent type 1 poliovirus. Journal of Virology 64:664–671
    [Google Scholar]
  41. Devaney M. A., Vakharia V. N., Lloyd R. E., Ehrenfeld E., Grubman M. J. 1988; Leader protein of foot-and-mouth disease virus is required for cleavage of p220 component of the cap-binding complex. Journal of Virology 62:4407–4409
    [Google Scholar]
  42. Dever T. E., Glynias M. J., Merrick W. C. 1987; GTP-binding domain: three consensus sequence elements with distinct spacing. Proceedings of the National Academy of Sciences, U.S.A 84:1814–1818
    [Google Scholar]
  43. DiMarchi R., Brooke G., Gale C., Cracknell V., Doel D., Mowat N. 1986; Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science 232:639–641
    [Google Scholar]
  44. Domingo E., Martinez-Salas E., Sobrino F., De la Torre J. C., Portela A., Ortin J., Lopez-Galindez C., Perez-Brena P., Villanueva N., Najera R., VanDepol S., Steinhauer D., DePolo N., Holland J. 1985; The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance - a review. Gene 40:1–8
    [Google Scholar]
  45. Deuchler M., Skern T., Sommergruber W., Neubauer C., Gruendler P., Fogy I., Blaas D., Kuechler E. 1987; Evolutionary relationships within the human rhinovirus genus: comparison of serotypes 89, 2 and 14. Proceedings of the National Academy of Sciences, U.S.A 84:2605–2609
    [Google Scholar]
  46. Duke G. M., Palmenberg A. C. 1989; Cloning and synthesis of infectious cardiovirus RNAs containing short, discrete poly(C) tracts. Journal of Virology 63:1822–1826
    [Google Scholar]
  47. Duke G. M., Osorio J. E., Palmenberg A. C. 1990; Attenuation of Mengo virus through genetic engineering of the 5′ non-coding poly(C) tract. Nature; London: 343474–476
    [Google Scholar]
  48. Earle J. A. P., Skuce R. A., Fleming C. S., Hoey E. M., Martin S. J. 1988; The complete nucleotide sequence of a bovine enterovirus. Journal of General Virology 69:253–263
    [Google Scholar]
  49. Evans D. J., McKeating J., Meredith J. M., Burke K. L., Katrak K., John A., Ferguson M., Minor P. D., Weiss R. A., Almond J. W. 1989; An engineered poliovirus chimaera elicits broadly reactive HIV-1 neutralizing antibodies. Nature; London: 339385–388
    [Google Scholar]
  50. Evans D. M. A., Dunn G., Minor P. D., Schild G. C., Cann A. J., Stanway G., Almond J. W., Currey K., Maizel J. V. 1985; A single nucleotide change in the 5′ non-coding region of the genome of the Sabin type 3 poliovaccine is associated with increased neurovirulence. Nature; London: 314548–550
    [Google Scholar]
  51. Ferguson M., Evans D. M. A., Magrath D. I., Minor P. D., Almond J. W., Schild G. C. 1985; Induction of broadly reactive, type-specific neutralizing antibody to poliovirus type 3 by synthetic peptides. Virology 143:505–515
    [Google Scholar]
  52. Filman D. J., Syed R., Chow M., Macadam A. J., Minor P. D., Hogle J. M. 1989; Structural factors that control conformational transitions are serotype specificity in type 3 poliovirus. EMBO Journal 8:1567–1580
    [Google Scholar]
  53. Fitch W. M., Margoldiash E. 1967; Construction of phylogenic trees. Science 155:279–284
    [Google Scholar]
  54. Forss S., Strebel K., Beck E., Schaller H. 1984; Nucleotide sequence and genome organization of foot-and-mouth disease virus. Nucleic Acids Research 12:6587–6601
    [Google Scholar]
  55. Fox G., Parry N. R., Barnett P. V., McGinn B., Rowlands D. J., Brown F. 1989; The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). Journal of General Virology 70:625–637
    [Google Scholar]
  56. Fricks C. E., Hogle J. M. 1990; Cell-induced conformational change in poliovirus: extemalization of the amino terminus of VP1 is responsible for liposome binding. Journal of Virology 64:1934–1945
    [Google Scholar]
  57. Fuller D., Argos P. 1987; Is Sindbis a simple picomavirus with an envelope. EMBO Journal 6:1099–1105
    [Google Scholar]
  58. Gama R. E., Hughes P. J., Bruce C. B., Stanway G. 1988; Polymerase chain reaction amplification of rhinovirus nucleic acids from clinical material. Nucleic Acids Research 16:9346
    [Google Scholar]
  59. Gama R. E., Horsnell P. R., Hughes P. J., North C., Bruce C. B., Al-Nakib W., Stanway G. 1989; Amplification of rhinovirus specific nucleic acids from clinical samples using the polymerase chain reaction. Journal of Medical Virology 28:73–77
    [Google Scholar]
  60. Gebauer F., De la Torre J. C., Gomes I., Mateu M. G., Barahona B., Tiraboschi B., Bergmann I., Auge De Mello P., Domingo E. 1988; Rapid selection of genetic and antigenic variants of foot-and-mouth disease virus during persistence in cattle. Journal of Virology 62:2041–2049
    [Google Scholar]
  61. Goldbach R., Wellink J. 1988; Evolution of plus-strand RNA viruses. Intervirology 29:260–267
    [Google Scholar]
  62. Gorbalenya A. E., Blinov V. M., Donchenko A. P., Koonin E. V. 1989a; An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive-strand RNA viral replication. Journal of Molecular Evolution 28:256–268
    [Google Scholar]
  63. Gorbalenya A. E., Donchenko A. P., Koonin E. V., Blinov V. M. 1989b; Two related superfamilies of putative helicases involved in replication, recombination, repair and expression of DNA and RNA genomes. Nucleic Acids Research 17:4713–4730
    [Google Scholar]
  64. Grantham R., Gautier C., Govy M., Mercier R., Pave A. 1980; Codon catalog usage and the genome hypothesis. Nucleic Acids Research 8:r49–r62
    [Google Scholar]
  65. Greve J. M., Davis G., Meyer A. M., Forte C. P., Yost S. C., Marlor C. W., Kamarck M. E., McClelland A. 1989; The major human rhinovirus receptor is ICAM-1. Cell 56:839–847
    [Google Scholar]
  66. Habili N., Symons R. H. 1989; Evolutionary relationships between luteoviruses and other RNA plant viruses based on sequence motifs in their putative RNA polymerases and nucleic acid helicases. Nucleic Acids Research 17:9543–9555
    [Google Scholar]
  67. Herman R. C. 1989; Alternatives for the initiation of translation. Trends in Biochemical Sciences 14:219–222
    [Google Scholar]
  68. Hirst G. 1962; Genetic recombination with Newcastle disease virus, poliovirus and influenza. Cold Spring Harbor Symposia on Quantitative Biology 27:303–309
    [Google Scholar]
  69. Hodgman T. C. 1988; A new superfamily of replicative proteins. Nature; London: 33322–23
    [Google Scholar]
  70. Hogle J. M., Chow M., Filman D. J. 1985; Three dimensional structure of poliovirus at 2·9 A resolution. Science 229:1358–1365
    [Google Scholar]
  71. Hughes P. J., Evans D. M. A., Minor P. D., Schild G. C., Almond J. W., Stanway G. 1986; The nucleotide sequence of a type 3 poliovirus isolated during a recent outbreak of poliomyelitis in Finland. Journal of General Virology 67:2093–2102
    [Google Scholar]
  72. Hughes P. J., North C., Jellis C. H., Minor P. D., Stanway G. 1988; The nucleotide sequence of human rhinovirus IB: molecular relationships within the rhinovirus genus. Journal of General Virology 69:49–58
    [Google Scholar]
  73. Hughes P. J., North C., Minor P. D., Stanway G. 1989; The nucleotide sequence of coxsackievirus A21. Journal of General Virology 70:2943–2952
    [Google Scholar]
  74. Hyypiä T., Auvinen P., Maaronen M. 1989; Polymerase chain reaction for human picornaviruses. Journal of General Virology 70:3261–3268
    [Google Scholar]
  75. Iizuka N., Kuge S., Nomoto A. 1987; Complete nucleotide sequence of the genome of the coxsackievirus Bl. Virology 156:64–73
    [Google Scholar]
  76. Iizuka N., Kohara M., Hagino-Yamagishi K., Abe S., Komatsu T., Tago K., Arita M., Nomoto A. 1989; Construction of less neurovirulent polioviruses by introducing deletions into the 5′ non-coding sequence of the genome. Journal of Virology 63:5354–5363
    [Google Scholar]
  77. Inoue T., Suzuki T., Sekiguchi K. 1989; The complete nucleotide sequence of swine vesicular disease virus. Journal of General Virology 70:919–934
    [Google Scholar]
  78. Jang S. K., Kräusslich H. -G., Nicklin M. J., Duke G. M., Palmenberg A. C., Wimmer E. 1988; A segment of the 5′ non-translated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. Journal of Virology 62:2636–2643
    [Google Scholar]
  79. Jang S. K., Davies M. V., Kaufman R. J., Wimmer E. 1989; Initiation of protein synthesis by internal entry of ribosomes into the 5′ non-translated region of encephalomyocarditis virus RNA in vivo. Journal of Virology 63:1651–1660
    [Google Scholar]
  80. Jenkins O., Booth J. D., Minor P. D., Almond J. W. 1987; The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the picornaviridae. Journal of General Virology 68:1835–1848
    [Google Scholar]
  81. Jenkins O., Cason J., Burke K. L., Lunney D., Gillen A., Patel D., McCance D. J., Almond J. W. 1990; An antigenic chimera of poliovirus induces antibodies against human papillomavirus type 16. Journal of Virology 64:1201–1206
    [Google Scholar]
  82. Kamer G., Argos P. 1984; Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research 12:7269–7282
    [Google Scholar]
  83. Kawamura N., Kohara M., Abe S., Komatsu T., Tago M., Arita M., Nomoto A. 1989; Determinants in the 5′ non-coding region of poliovirus Sabin 1 RNA that influence the attenuation phenotype. Journal of Virology 63:1302–1309
    [Google Scholar]
  84. Kew O. M., Nottay B. K. 1985; Evolution of the oral polio vaccine strains in humans occurs by both mutation and intermolecular recombination. In Modern Approaches to Vaccines: Molecular and Chemical Basis of Virus Virulence and Immunogenicity pp. 357–362 Chanock R. M., Lerner R. A. Edited by New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  85. Khatchikian D., Orlich M., Rott R. 1989; Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature; London: 340156–157
    [Google Scholar]
  86. Kim S., Smith T. J., Chapman M. S., Pevear D. C., Dutko F. J., Felock P. J., Diana G. D., Mcinlay M. A. 1989; Crystal structure of human rhinovirus serotype 1A (HRV1A). Journal of Molecular Biology 210:91–111
    [Google Scholar]
  87. King A. M. Q., McCahon D., Saunders K., Newman J. W. I., Slade W. R. 1985; Multiple sites of recombination within the RNA genome of foot-and-mouth disease virus. Virus Research 3:373–384
    [Google Scholar]
  88. King A. M. Q., McCahon D., Slade W. R., Newman J. W. I. 1982; Recombination in RNA. Cell 29:921–928
    [Google Scholar]
  89. Kinnunen L., Huovilainen A., Pöyry T., Hovi T. 1990; Rapid molecular evolution of wild type 3 poliovirus during infection in individual hosts. Journal of General Virology 71:317–324
    [Google Scholar]
  90. Kitamura N., Semler B., Rothberg P. G., Larsen G. R., Adler C. J., Dorner A. J., Emini E. A., Hanecak R., Lee J. J., Van Der Werf S., Anderson C. W., Wimmer E. 1981; Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature; London: 291475–533
    [Google Scholar]
  91. Klump W. M., Bergmann I., Müller B. C., Ameis D., Kandolf R. 1990; Complete nucleotide sequence of infectious coxsackie-virus B3 cDNA: two initial 5′ uridine residues are regained during plus-strand RNA synthesis. Journal of Virology 64:1573–1583
    [Google Scholar]
  92. Kozak M. 1989; The scanning model for translation: an update. Journal of Cell Biology 108:229–241
    [Google Scholar]
  93. Kräusslich H. -G., Wimmer E. 1988; Viral proteinases. Annual Review of Biochemistry 57:701–754
    [Google Scholar]
  94. Kräusslich H. -G., Nicklin M. J. H., Toyoda H., Etchison D., Wimmer E. 1987; Poliovirus proteinase 2A induces cleavage of eucaryotic initiation factor 4F polypeptide P220. Journal of Virology 61:2711–2718
    [Google Scholar]
  95. Krishnaswamy S., Rossmann M. G. 1990; Structural refinement and analysis of Mengo virus. Journal of Molecular Biology 211:803–844
    [Google Scholar]
  96. Kuge S., Nomoto A. 1987; Construction of viable deletion and insertion mutants of the Sabin strain of type 1 poliovirus: function of the 5′ noncoding sequence in viral replication. Journal of Virology 61:1478–1487
    [Google Scholar]
  97. Kuge S., Kawamura N., Nomoto A. 1989; Strong inclination toward transition mutation in nucleotide substitutions by poliovirus replicase. Journal of Molecular Biology 207:175–182
    [Google Scholar]
  98. La Monica N., Meriam C., Racaniello V. R. 1986; Mapping of sequences required for mouse neurovirulence of poliovirus type 2 Lansing. Journal of Virology 57:515–525
    [Google Scholar]
  99. Leckie G. W. 1988 Cloning and sequencing of the genome of human rhinovirus 9 Ph.D. thesis University of Reading;
    [Google Scholar]
  100. Li J. -P., Baltimore D. 1988; Isolation of poliovirus 2C mutants defective in RNA synthesis. Journal of Virology 62:4016–4021
    [Google Scholar]
  101. Li J. -P., Baltimore D. 1990; An intragenic revertant of a poliovirus 2C mutant has an uncoating defect. Journal of Virology 64:1102–1107
    [Google Scholar]
  102. Lindberg A. M., Stälhandske P. O. K., Pettersson U. 1987; Genome of coxsackievirus B3. Virology 156:50–63
    [Google Scholar]
  103. Linemeyer D. L., Menke J. G., Martin-Gallardo A., Hughes J. V., Young A., Mitra S. W. 1985; Molecular cloning and partial sequencing of hepatitis A viral cDNA. Journal of Virology 54:247–255
    [Google Scholar]
  104. Lomax N. B., Yin F. H. 1989; , Evidence for the role of the P2 protein of human rhinovirus in its host range change. Journal of Virology 63:2396–2399
    [Google Scholar]
  105. Luo N., Vriend G., Kamer G., Minor I., Arnold E., Rossmann M. G., Boege U., Scraba D. G., Duke G. M., Palmenberg A. C. 1987; The atomic structure of mengo virus at 3·0 Å resolution. Science 235:182–191
    [Google Scholar]
  106. Makoff A. J., Paynter C. A., Rowlands D. J., Boothroyd J. C. 1982; Comparison of the amino acid sequence of the major immunogen from three serotypes of foot and mouth disease virus. Nucleic Acids Research 10:8285–8295
    [Google Scholar]
  107. Marlin S. D., Staunton D. E., Springer T. A., Stratowa C., Sommergruber W., Merluzzi V. J. 1990; A soluble form of intercellular adhesion molecule-1 inhibits rhinovirus infection. Nature; London: 34470–72
    [Google Scholar]
  108. Mendelsohn C. L., Wimmer E., Racaniello V. R. 1989; Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855–865
    [Google Scholar]
  109. Meyers G., Rumenapf T., Theil H. -J. 1989; Ubiquitin in a togavirus. Nature; London: 341:491
    [Google Scholar]
  110. Minor P. D., Dunn G. 1988; The effect of sequences in the 5′ noncoding region on the replication of polioviruses in the human gut. Journal of General Virology 69:1091–1096
    [Google Scholar]
  111. Minor P. D., Schild G. C., Bootman J., Evans D. M. A., Ferguson M., Reev P., Spitz M., Stanway G., Cann A. J., Hauptmann R., Clarke L. D., Mountford R. C., Almond J. W. 1983; Location and primary structure of a major antigenic site for poliovirus neutralization. Nature; London: 301674–679
    [Google Scholar]
  112. Minor P. D., Ferguson M., Evans D. M. A., Almond J. W., Icenogle J. P. 1986a; Antigenic structure of polioviruses of serotypes 1, 2 and 3. Journal of General Virology 67:1283–1291
    [Google Scholar]
  113. Minor P. D., John A., Ferguson M., Icenogle J. P. 1986b; Antigenic and molecular evolution of the vaccine strain of type 3 poliovirus during the period of excretion by a primary vaccinee. Journal of General Virology 67:693–706
    [Google Scholar]
  114. Minor P. D., Ferguson M., Phillips A., Magrath D. I., Huovilainen A., Hovi T. 1987; Conservation in vivo of protease cleavage sites in antigenic sites of poliovirus. Journal of General Virology 68:1857–1865
    [Google Scholar]
  115. Murdin A. D., Wimmer E. 1989; Construction of poliovirus type 1/type 2 antigenic hybrid by manipulation of neutralization antigenic site II. Journal of Virology 63:5251–5257
    [Google Scholar]
  116. Murray M. G., Bradley J., Yang X. -F., Wimmer E., Moss E. G., Racaniello V. R. 1988a; Poliovirus host range is determined by a short amino acid sequence in neutralization antigenic site I. Science 241:213–215
    [Google Scholar]
  117. Murray M. G., Kuhn R. J., Arita M., Kawamura N., Nomoto A., Wimmer E. 1988b; Poliovirus type I/type 3 antigenic hybrid virus constructed in vitro elicits type 1 and type 3 neutralizing antibodies in rabbits and monkeys. Proceedings of the National Academy of Sciences, U.S.A 85:3203–3207
    [Google Scholar]
  118. Najarian R., Caput D., Gee W., Potter S., Renard A., Merryweather J., Van Nest G., Dina D. 1985; Primary structure and gene organization of human hepatitis A virus. Proceedings of the National Academy of Sciences, U.S.A 82:2627–2631
    [Google Scholar]
  119. Newguard C. B., Nokano K., Hwang P. K., Fletterick R. J. 1986; Sequence analysis of the cDNA encoding human liver glycogen phosphorylase reveals tissue-specific codon usage. Proceedings of the National Academy of Sciences, U.S.A 83:8132–8136
    [Google Scholar]
  120. Ohara Y., Stein S., Fu J., Stillman L., Klaman L., Roos R. P. 1988; Molecular cloning and sequence determination of Theiler’s murine encephalomyelitis viruses. Virology 164:245–255
    [Google Scholar]
  121. Palmenberg A. C. 1987; Comparative organization and genome structure in picomaviruses. In Positive Strand RNA Viruses, UCLA Symposia on Molecular and Cellular Biology, New Series 54 pp. 25–34 Brinton M. A., Rueckert R. Edited by New York: Alan R. Liss;
    [Google Scholar]
  122. Palmenberg A. C. 1989; Sequence alignments of picornaviral capsid proteins. In Molecular Aspects of Picomavirus Infection and Detection pp. 211–241 Semler B. L., Ehrenfeld E. Edited by Washington,D.C.: American Society for Microbiology;
    [Google Scholar]
  123. Palmenberg A. C., Kirby E. M., Tanda M. R., Drake N. L., Duke G. M., Potratz K. F., Collett M. S. 1984; The nucleotide and deduced amino acid sequence of the encephalomyo-carditis viral polyprotein coding region. Nucleic Acids Research 12:2969–2985
    [Google Scholar]
  124. Parks G. D., Duke G. M., Palmenberg A. C. 1986; Encephalomyelitis virus 3C protease: efficient cell-free expression from clones which link 5′ noncoding sequences to the P3 region. Journal of Virology 60:376–384
    [Google Scholar]
  125. Paul A. V., Tada H., Von Der Helm K., Wissel T., Kiehn R., Wimmer E., Deinhardt F. 1987; The entire nucleotide sequence of the genome of human hepatitis A virus (isolate MBB). Virus Research 8:153–171
    [Google Scholar]
  126. Pelletier J., Sonenberg N. 1988; Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature; London: 334320–325
    [Google Scholar]
  127. Pelletier J., Kaplan G., Racaniello V. R., Sonenberg N. 1988a; Cap-independent translation of poliovirus mRNA is conferred by sequence elements within the 5′ non-coding region. Molecular and Cellular Biology 8:1103–1112
    [Google Scholar]
  128. Pelletier J., Flynn M. E., Kaplan G., Racaniello V., Sonenberg N. 1988b; Mutational analysis of upstream AUG codons of poliovirus RNA. Journal of Virology 62:4486–4492
    [Google Scholar]
  129. Pelletier J., Kaplan G., Racaniello V., Sonenberg N. 1988c; Translational efficiency of poliovirus mRNA: mapping inhibitory cis-acting elements within the 5′ non-coding region. Journal of Virology 62:2219–2227
    [Google Scholar]
  130. Pestova T. V., Maslova S. V., Potapov U. K., Agol V. I. 1989; Distinct modes of poliovirus polyprotein initiation in vitro. Virus Research 14:107–118
    [Google Scholar]
  131. Pevear D. C., Calenoff M., Rozhon E., Lipton H. 1987; Analysis of the complete nucleotide sequence of the picomavirus. Thieler’s murine encephalomyelitis virus indicates that it is closely related to cardioviruses. Journal of Virology 61:1507–1516
    [Google Scholar]
  132. Pevear D. C., Borkowski J., Calenoff M., Oh C. K., Ostrowski B., Lipton H. L. 1988; Insights into Theiler’s virus neurovirulence based on a genomic comparison of the neurovirulent GDVII and less virulent BeAn strains. Virology 165:1–12
    [Google Scholar]
  133. Pevear D. C., Fancher M. J., Felock P. J., Rossmann M. G., Miller M. S., Diana G., Treasurywala A. M., McKinlay M. A., Dutko F. J. 1989; Conformational change in the floor of ihe human rhinovirus canyon blocks absorption to HeLa cell receptors. Journal of Virology 63:2002–2007
    [Google Scholar]
  134. Pevear D. C., Oh C. K., Cunningham L. L., Calenoff M., Jubelt B. 1990; Localization of genomic regions specific for the attenuated, mouse-adapted poliovirus type 2 strain W-2. Journal of General Virology 71:43–52
    [Google Scholar]
  135. Pilipenko E. V., Blinov V. M., Chernov B. K., Dmitrieva T. M., Agol V. I. 1989a; Conservation of the secondary structure elements of the 5′ untranslated region of Cardio- and aphthovirus RNAs. Nucleic Acids Research 17:5701–5711
    [Google Scholar]
  136. Pilipenko E. V., Blinov V. M., Romanova L. I., Sinyakov A. N., Maslova S. V., Agol V. I. 1989b; Conserved structural domains in the 5′ untranslated region of picornaviral genomes: an analysis of the segments controlling translation and neurovirulence. Virology 168:201–209
    [Google Scholar]
  137. Pollard S. R., Dunn G., Cammack N., Minor P. D., Almond J. W. 1989; Nucleotide sequence of a neurovirulent variant of the type 2 oral poliovirus vaccine. Journal of Virology 63:4949–4951
    [Google Scholar]
  138. Racaniello V. R., Baltimore D. 1981; Molecular cloning of poliovirus DNA and determination of the complete nucleotide sequence of the viral genome. Proceedings of the National Academy of Sciences, U.S.A 78:4887–4891
    [Google Scholar]
  139. Ratka M., Lackmann M., Ueckermann C., Karlins U., Koch G. 1989; Poliovirus-associated protein kinase: destabilization of the virus capsid and stimulation of the phosphorylation by Zn2+. Journal of Virology 63:3954–3960
    [Google Scholar]
  140. Rico-Hesse R., Pallansch M., Nottay B. K., Kew O. M. 1987; Geographic distribution of wild poliovirus type 1 genotypes. Virology 160:311–322
    [Google Scholar]
  141. Rivera V. M., Welsh J. D., Maizel J. V.JR 1988; Comparative sequence analysis of the 5′ non-coding region of the enteroviruses and rhinoviruses. Virology 165:42–50
    [Google Scholar]
  142. Rossmann M. G., Johnson J. E. 1989; Icosahedral RNA virus structure. Annual Review of Biochemistry 58:533–573
    [Google Scholar]
  143. Rossmann M. G., Palmenberg A. C. 1988; Conservation of the putative receptor attachment site in picomaviruses. Virology 164:373–382
    [Google Scholar]
  144. Rossmann M. G., Arnold E., Erickson T. W., Frankenberger E. A., Griffith T. P., Hecht H. T., Johnson T., Kamer G., Luo M., Mosser A. G., Rueckert R. R., Sherry B., Vriend G. 1985; Structure of a human cold virus and functional relationship to other picomaviruses. Nature; London: 317145–153
    [Google Scholar]
  145. Rueckert R. R. 1985; Picomaviruses and their replication. In Virology pp. 705–738 Fields B. N. Edited by New York: Raven Press;
    [Google Scholar]
  146. Rueckert R. R., Wimmer E. 1984; Systematic nomenclature of picomavirus proteins. Journal of Virology 50:957–959
    [Google Scholar]
  147. Ruoslahti E., Pierschbacher M. D. 1987; New perspectives in cell adhesion: RGD and integrins. Science 238:491–497
    [Google Scholar]
  148. Ryan M. D., Jenkins O., Hughes P. J., Brown A., Knowles N. J., Booth D., Minor P. D., Almond J. W. 1990; The complete nucleotide sequence of enterovirus type 70: relationships with other members of the Picomaviridae. Journal of General Virology 71:2291–2299
    [Google Scholar]
  149. Sherry B., Mosser A. G., Colonno R. J., Rueckert R. R. 1986; Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picomavirus, human rhinovirus 14. Journal of Virology 57:246–257
    [Google Scholar]
  150. Shih D. S., Park I. W., Evans C. L., Jaynes J. M., Palmenberg A. C. 1987; Effects of cDNA hybridization on translation of encephalomyocarditis virus RNA. Journal of Virology 61:2033–2037
    [Google Scholar]
  151. Skern T., Sommergruber W., Blass D., Gruendler P., Fraun-Dorfer F., Pieler C., Fogy I., Kuechler E. 1985; Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Research 13:2111–2126
    [Google Scholar]
  152. Skinner M. A., Racaniello V. R., Dunn G., Cooper J., Minor P. D., Almond J. W. 1989; New model for the secondary structure of the 5′ non-coding region of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. Journal of Molecular Biology 207:379–391
    [Google Scholar]
  153. Smith D. B., Inglis S. C. 1987; The mutation rate and variability of eukaryotic viruses: an analytical review. Journal of General Virology 68:2729–2740
    [Google Scholar]
  154. Smith T. J., Kremer M. J., Ming L., Vriend G., Arnold E., Kramer G., Rossmann M. G., McKinlay M. A., Diana G. D., Otto M. J. 1986; The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233:1286–1293
    [Google Scholar]
  155. Sonenberg N., Pelletier J. 1989; Poliovirus translation: a paradigm for a novel initiation mechanism. BioEssays 11:128–132
    [Google Scholar]
  156. Stanway G., Cann H. J., Hauptmann R., Hughes P. J., Clarke L. D., Mountford R. C., Minor P. D., Schild G. C., Almond J. W. 1983; The nucleotide sequence of poliovirus type 3 Leon 12a1b: comparison with poliovirus type 1. Nucleic Acids Research 11:5629–5643
    [Google Scholar]
  157. Stanway G., Hughes P. J., Mountford R. C., Minor P. D., Almond J. W. 1984a; The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Research 12:7859–7875
    [Google Scholar]
  158. Stanway G., Hughes P. J., Mountford R. C., Reeve P., Minor P. D., Schild G. C., Almond J. W. 1984b; Comparison of the complete nucleotide sequences of the genomes of the neurovirulent poliovirus P3/Leon37 and its attenuated Sabin vaccine derivative P3/Leonl2a1b. Proceedings of the National Academy of Sciences U.S.A 81:1539–1543
    [Google Scholar]
  159. Staunton D. E., Merluzzi V. J., Rothlein R., Barton R., Martin S. D., Springer T. A. 1989; A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849–853
    [Google Scholar]
  160. Strebel K., Beck E. 1986; A second protease of foot-and-mouth disease virus. Journal of Virology 58:893–899
    [Google Scholar]
  161. Svitkin Y. V., Maslova S. V., Agol V. I. 1985; The genomes of attenuated and virulent poliovirus strains differ in their in vitro translation efficiencies. Virology 147:243–252
    [Google Scholar]
  162. Svitkin Y. V., Cammack N., Minor P. D., Almond J. W. 1990; Translation deficiency of the Sabin type 3 poliovirus genome:association with an attenuating mutation C472-U. Virology 175:103–109
    [Google Scholar]
  163. Tobin G. J., Young D. C., Flanegan J. B. 1989; Self-catalyzed linkage of poliovirus terminal protein VPg to poliovirus RNA. Cell xs59:511–519
    [Google Scholar]
  164. Torgersen H., Skern T. M., Blaas D. 1989; Typing of human rhinoviruses based on sequence variations in the 5′ non-coding region. Journal of General Virology 70:3111–3116
    [Google Scholar]
  165. Toyoda H., Khara M., Kataoka Y., Suganuma T., Omata T., Imura N., Nomoto A. 1984; Complete nucleotide sequences of all three poliovirus serotype genomes: implication for genetic relationship, gene function and antigenic determinants. Journal of Molecular Biology 174:561–585
    [Google Scholar]
  166. Toyoda H., Nicklin M. J. M., Murray M. T., Anderson C. W., Dunn J. J., Studer F. W., Wimmer E. 1986; A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45:761–770
    [Google Scholar]
  167. Trono D., Andino R., Baltimore D. 1988; An RNA sequence of hundreds of nucleotides at the 5′-end of poliovirus RNA is involved in allowing viral protein synthesis. Journal of Virology 62:2291–2299
    [Google Scholar]
  168. Ward C. D., Stokes M. A., Flanegan J. B. 1988; Direct measurement of the poliovirus RNA polymerase error frequency in vitro. Journal of Virology 62:558–562
    [Google Scholar]
  169. Warwicker J. 1989; A theoretical study of the acidification of the rhinovirus capsid. FEBS Letters 257:403–407
    [Google Scholar]
  170. Westrop G. D., Wareham K. A., Evans D. M. A., Dunn G., Minor P. D., Magrath D. I., Taffs F., Marsden S., Skinner M. A., Schild G. C., Almond J. W. 1989; Genetic basis of attenuation of the Sabin type 3 oral poliovirus vaccine. Journal of Virology 63:1338–1344
    [Google Scholar]
  171. Ypma-Wong M. F., Dewalt P. G., Johnson V. H., Lamb J. G., Semler B. 1988a; Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166:265–270
    [Google Scholar]
  172. Ypma-wong M. F., Filman D. J., Hogle J. M., Semler B. 1988b; Structural domains of the poliovirus polyprotein are major determinants for proteolytic cleavage at Gln-Gly pairs. Journal of Biological Chemistry 263:17846–17856
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-71-11-2483
Loading
/content/journal/jgv/10.1099/0022-1317-71-11-2483
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error