1887

Abstract

Vaccinia virus recombinants expressing the herpes simplex virus type 1 (HSV-1) genes encoding ICP0 or ICP4 were used to identify the precise target antigen(s) of murine anti-viral cytotoxic T lymphocytes (CTL) specific for the non-structural immediate early proteins. These studies revealed that HSV-1-specific CTL, restricted to class I major histocompatibility complex genes of the H-2 haplotype but not the H-2 or H-2haplotypes, would lyse autologous cells expressing ICP4. HSV-1-specific CTL derived from various mice strains failed to lyse target cells expressing ICP0.Calculation of the frequencies of H-2-restricted virus-specific CTL demonstrated that approximately a third of the total HSV-1-specific response was directed against ICP4. Immunization of mice with either recombinant vaccinia virus or transfected L cells expressing ICP4 induced HSV-1-specific lymphoproli-feration and delayed hypersensitivity but CTLs were not induced. More importantly, such immunized animals were unable to resist or control a subsequent challenge with virulent HSV-1.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-10-2391
1990-10-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/10/JV0710102391.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-10-2391&mimeType=html&fmt=ahah

References

  1. Ackermann M., Braun D. K., Pereira L., Roizman B. 1984; Characterization of herpes simplex virus 1 α proteins 0, 4, and 27 with monoclonal antibodies. Journal of Virology 52:108–118
    [Google Scholar]
  2. Arsenakis M., Hubenthal-Voss J., Campadelli-Fuime G., Pereira L., Roizman B. 1986; Construction and properties of a cell line constitutively expressing the herpes simplex virus glycopro-tein B dependent on functional α4 protein synthesis. Journal of Virology 60:674–682
    [Google Scholar]
  3. Biorkman P. J., Super M. A., Samraoui B., Bennett W. S., Strominger J. L., Wiley D. C. 1987; The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature; London: 329512–518
    [Google Scholar]
  4. Blacklaws B. A., Nash A. A., Darby G. 1987; Specificity of the immune response of mice to herpes simplex virus glycoproteins B and D constitutively expressed on L cell lines. Journal of General Virology 68:1103–1114
    [Google Scholar]
  5. Borysiewicz L. K., Graham S., Hickling J. K., Mason P. D., Sissons J. G. P. 1988; Human cytomegalovirus -specific cytotoxic T cells: their precursor frequency and stage specificity. European Journal of Immunology 18:269–275
    [Google Scholar]
  6. Cantin E. M., Eberle R., Baldick J. L., Moss B., Willey D. E., Notkins A. L., Openshaw H. 1987; Expression of herpes simplex virus (HSV-1) glycoprotein B by a recombinant vaccinia virus and protection of mice against lethal HSV-1 infection. Proceedings of the National Academy of Sciences U.S.A.: 845908–5912
    [Google Scholar]
  7. Coupar B. E. H., Andrew M. E., Both G. W., Boyle D. B. 1986; .Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. European Journal of Immunology 16:1479–1487
    [Google Scholar]
  8. Courtney R. J., Benyesh-Melnick M. 1974; Isolation and characterization of a large molecular weight polypeptide of herpes simplex virus type 1. Virology 62:539–551
    [Google Scholar]
  9. Cremer K. J., Mackett M., Wohlenberg C., Notkins A. L., Moss B. 1985; Vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D prevents latent herpes in mice. Science 228:737–740
    [Google Scholar]
  10. Glorioso J., Kees V., Kumel G., Kirschner H., Krammer P. 1985; Identification of herpes simplex virus type 1 (HSV-1) glycoprotein C as the immunodominant antigen for HSV-1 specific memory cytotoxic T lymphocytes. Journal of Immunology 135:575–582
    [Google Scholar]
  11. Jennings S. R., Rice P. L., Pan S., Knowles B. B., Tevethia S. S. 1984; Recognition of herpes simplex virus antigens on the surface of mouse cells of the H-2b haplotype by virus specific cytotoxic T lymphocytes. Journal of Immunology 132:475–481
    [Google Scholar]
  12. Jonjic S., Del Val M., Keil G. M., Reddehase M. J., Koszinowski U. H. 1988; A nonstructural viral protein expressed by recombinant vaccinia virus protects against lethal cytomegalovirus infection. Journal of Virology 62:1653–1658
    [Google Scholar]
  13. Koszinowski U. H., Reddehase M. J., Keil G. M., Volkmer H., Jonjil S., Messerle M., Del Val M., Mutter W., Much K., Buhler B. 1987; Molecular analysis of herpesviral gene products recognized by protective cytolytic T lymphocytes. Immunology Letters 16:185–192
    [Google Scholar]
  14. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  15. Lawman M. J. P., Rouse B. T., Courtney R. J., Walker R. D. 1980; Cell mediated immunity against herpes simplex induction of cytotoxic T lymphocytes. Infection and Immunity 27:113–139
    [Google Scholar]
  16. Mclaughlin-Taylor E., Willey D. E., Cantin E. M., Eberle R., Moss B., Openshaw H. 1988; A recombinant vaccinia virus expressing herpes simplex virus type 1 glycoprotein B induces cytotoxic T lymphocytes in mice. Journal of General Virology 69:1731–1734
    [Google Scholar]
  17. Martin S., Rouse B. T. 1987; The mechanisms of antiviral immunity induced by a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: clearance of local infection. Journal of Immunology 138:3431–3437
    [Google Scholar]
  18. Martin S., Rouse B. T. 1990; The control of human herpesvirus infections by cytotoxic T lymphocytes (CTL): a comparison to AIDS virus specific CTL. In Herpesvirus, the Immune System and AIDS pp 73–98 Aurelian L. A. Edited by Nowell: Kluwer Academic;
    [Google Scholar]
  19. Martin S., Moss B., Berman P. W., Laskey L. A., Rouse B. T. 1987; The mechanisms of antiviral immunity induced by a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: cytotoxic T cells. Journal of Virology 61:726–736
    [Google Scholar]
  20. Martin S., Courtney R. J., Fowler G., Rouse B. T. 1988; Herpes simplex virus type 1-specific cytotoxic T lymphocytes recognize virus nonstructural proteins. Journal of Virology 62:2265–2273
    [Google Scholar]
  21. Martin S., Cantin E., Rouse B. T. 1989; Evaluation of antiviral immunity using vaccinia virus recombinants expressing cloned genes for herpes simplex virus type 1 glycoproteins. Journal of General Virology 70:1359–1370
    [Google Scholar]
  22. Maryanski J. L., Pala P., Cerottini J. C., Corradin G. 1988; Synthetic peptides as antigens and competitors in recognition by H-2 restricted cytolytic T cells specific for HLA. Journal of Experimental Medicine 167:1341–1405
    [Google Scholar]
  23. Pereira L., Wolff M. H., Fenwick M., Roizman B. 1977; Regulation of herpesvirus macromolecular synthesis. V. Properties of alpha polypeptides made in HSV-1 and HSV-2 infected cells. Virology 77:733–749
    [Google Scholar]
  24. Pfizenmaier K., Starzinski-Powitz A., Rollinghoff M., Falke D., Wagner H. 1977; T-cell mediated cytotoxicity against herpes simplex virus-infected target cells. Nature; London: 265630–632
    [Google Scholar]
  25. Powell K. L., Courtney R. J. 1975; Polypeptides synthesized in herpes simplex virus type 2 infected HEP-2 cells. Virology 66:217–228
    [Google Scholar]
  26. Reddehase M. J., Koszinowski U. H. 1984; Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature; London: 312369–371
    [Google Scholar]
  27. Rosenthal K. L., Smiley J. R., South S., Johnson D. C. 1987; Cells expressing herpes simplex virus glycoprotein C but not gB, gD or gE are recognized by murine virus specific cytotoxic T lymphocytes. Journal of Virology 61:2438–2447
    [Google Scholar]
  28. Rouse B. T., Larsen H. S., Wagner H. 1983; Frequency of cytotoxic T lymphocyte precursors to herpes simplex virus type 1 as determined by limiting dilution analysis. Infection and Immunity 39:785–792
    [Google Scholar]
  29. Schrier R. D., Pizer L. I., Moorehead J. W. 1983; Type-specific delayed hypersensitivity and protective immunity induced by isolated herpes simplex virus glycoprotein. Journal of Immunology 130:1413–1418
    [Google Scholar]
  30. Southern P. J., Berg P. 1982; Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. Journal of Molecular and Applied Genetics 1:326–341
    [Google Scholar]
  31. Stunnenberg H. G., Lanfe H., Philipson L., Van Miltenburg R. T., Vander Vliet P. C. 1988; High expression of functional adenovirus DNA polymerase and terminal precursor protein using recombinant vaccinia virus. Nucleic Acids Research 16:2431–2444
    [Google Scholar]
  32. Sugden B. 1989; Synthesis for a complex role. Nature; London: 339179–180
    [Google Scholar]
  33. Taswell C. 1981; Limiting dilution assays for the determination of immunocompetent cell frequencies. Journal of Immunology 126:1614–1619
    [Google Scholar]
  34. Townsend A. R. M., Gotch F. M., Davey J. 1985; Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell. 42:457–467
    [Google Scholar]
  35. Townsend A., Bastin J., Gould K., Brownlee G., Andrew M., Coupar B., Boyle D., Chan S., Smith G. 1988; Defective presentation to class I restricted cytotoxic T lymphocytes in vaccinia infected cells is overcome by enhanced degradation of antigen. Journal of Experimental Medicine 168:1211–1224
    [Google Scholar]
  36. Von Boehmer H., Hengartner H., Nabholz M., Lenhardt W., Schreis M. 1979; Fine specificity of a continuously growing killer cell clone specific for H-Y antigen. European Journal of Immunology 9:592–597
    [Google Scholar]
  37. Whitton J. L., Gebhard J. R., Lewicki H., Tishon A., Oldstone M. B. A. 1988; Molecular definition of a major cytotoxic T lymphocyte epitope in the glycoprotein of lymphocytic choriomeningitis virus. Virology 62:687–695
    [Google Scholar]
  38. Wlgler M., Pellicer A., Sllverstein S., Axel R., Urlaub G., Chasin L. 1979; DNA-mediated transfer of the adenine phospho-ribosyltransferase locus into mammalian cells. Proceedings of the National Academy of Sciences U.S.A.: 761373–1376
    [Google Scholar]
  39. Wilcox K. W., Khon A., Sklyanskaya E., Roizman B. 1980; Flerpes simplex virus phosphoproteins. I. Phosphate cycles on and off. some viral polypeptides and can alter their affinity for DNA. Journal of Virology 33:167–182
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-10-2391
Loading
/content/journal/jgv/10.1099/0022-1317-71-10-2391
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error