1887

Abstract

The complete nucleotide sequence of rice dwarf virus (RDV) genome segment 4 was determined. Genome segment 4 was 2468 nucleotides long and had a long open reading frame initiating at nucleotides 64 to 66 and terminating at 2245 to 2247. The deduced polypeptide contained 727 amino acid residues with an of 79·8K. Amino acid sequences similar to a ‘zinc- finger’ and purine NTP-binding motifs were present in the deduced polypeptide. Considerable amino acid sequence homology was detected between genome segment 4 of RDV and wound tumor virus (WTV). One of the sequences similar to the ‘zinc-finger’ motif was present in a conserved region of the polypeptide of both viruses. However, the sequence similar to the purine NTP-binding motif was not present in the polypeptide encoded by genome segment 4 of WTV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-10-2217
1990-10-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/10/JV0710102217.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-10-2217&mimeType=html&fmt=ahah

References

  1. Anzola J. V., Zhengkai X., Asamizu T. A., Nuss D. L. 1987; Segment-specific inverted repeats found adjacent to conserved terminal sequences in wound tumor virus genome and defective interfering RNAs. Proceedings of the National Academy of Sciences U.S.A.: 848301–8305
    [Google Scholar]
  2. Anzola J. V., Dall D. J., Xu Z., Nuss D. L. 1989a; Complete nucleotide sequence of wound tumor virus genomic segments encoding nonstructural polypeptides.. Virology 171:222–228
    [Google Scholar]
  3. Anzola J. V., Xu Z., Nuss D. L. 1989b; Complete nucleotide sequence of wound tumor virus genomic segment S7.. Nucleic Acids Research 17:3300
    [Google Scholar]
  4. Asamizu T., Summers D., Motika M. B., Anzola J. V., Nuss D. L. 1985; Molecular cloning and characterization of the genome of wound tumor virus: a tumor-inducing plant reovirus.. Virology 144:398–409
    [Google Scholar]
  5. Berg J. M. 1986; Potential metal-binding domains in nucleic acid binding proteins. Science 232:485–484
    [Google Scholar]
  6. Boccardo G., Milne R. G. 1984; Plant reovirus group. CMI/AAB Descriptions of Plant Viruses294
    [Google Scholar]
  7. Chou P. Y., Fasman G. D. 1978; Prediction of the secondary structure of proteins from their amino acid sequence.. Advances in Enzymology 47:45–148
    [Google Scholar]
  8. Dall D. J., Anzola J. V., Xu Z., Nuss D. 1989; Complete nucleotide sequence of wound tumor virus genomic segment S11.. Nucleic Acids Research 17:3599
    [Google Scholar]
  9. Dever T. E., Glynias M. J., Merrick W. C. 1987; GTP-binding domain: three consensus sequence elements with distinct spacing. Proceedings of the National Academy of Sciences U.S.A.: 841814–1818
    [Google Scholar]
  10. De Wachter R., Fiers W. 1972; Preparative two-dimensional polyacrylamide gel electrophoresis of 32P-labeled RNA.. Analytical Biochemistry 49:184–197
    [Google Scholar]
  11. Fukumoto F., Omura T., Minobe Y. 1989; Nucleotide sequence of segment S9 of the rice dwarf virus genome.. Archives of Virology 107:135–139
    [Google Scholar]
  12. Gornalenya A. E., Koonin E. V. 1989; Viral proteins containing the purine NTP-binding sequence pattern.. Nucleic Acids Research 17:8413–8440
    [Google Scholar]
  13. Gubler U., Hoffman B. J. A. 1983; A simple and very efficient method for generating cDNA libraries.. Gene 25:263–269
    [Google Scholar]
  14. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DN A sequencing.. Gene 28:351–359
    [Google Scholar]
  15. Jordan R. L., Dodds J. A. 1983; Hybridization of 5′ end-labelled RNA to plant viral RNA in agarose and acrylamide gels.. Plant Molecular Biology Reporter 1:31–37
    [Google Scholar]
  16. Kimura I., Minobe Y., Omura T. 1987; Changes in a nucleic acid and a protein component of rice dwarf virus particles associated with an increase in symptom severity.. Journal of General Virology 68:3211–3215
    [Google Scholar]
  17. Kozak M. 1987; An analysis of 5′ non-coding sequences from 699 vertebrate messenger RNAs.. Nucleic Acids Research 15:8125–8132
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 2276806–85
    [Google Scholar]
  19. Li J. K. K., Parker B., Kowlik T. 1987; Rapid alkaline blot-transfer of viral dsRNAs.. Analytical Biochemistry 163:210–218
    [Google Scholar]
  20. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Mazen A., De Murcia J. M., Molenete M., Simonin F., Gradwohl G., Poirier G., De Murcia G. 1989; Poly(ADP-ribose) polymerase: a novel finger protein.. Nucleic Acids Research 17:4689–4698
    [Google Scholar]
  22. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–77
    [Google Scholar]
  23. Nakashima K., Kakutani T., Minobe Y. 1990; Sequence analysis and product assignment of segment 7 of the rice dwarf virus genome. Journal of General Virology 71:725–729
    [Google Scholar]
  24. Nuss D. L., Peterson A. J. 1981; Resolution and genome assignment of mRNA transcripts synthesized in vitroby wound tumor virus. Virology 114:399–404
    [Google Scholar]
  25. Omura T., Minobe Y., Tsuchizaki T. 1988; Nucleotide sequence of segment S10 of the rice dwarf virus genome. Journal of General Virology 69:227–231
    [Google Scholar]
  26. Omura T., Ishikawa K., Hirano H., Ugaki M., Minobe Y., Tsuchizaki T., Kato H. 1989; The outer capsid protein of rice dwarf virus is encoded by genome segment S8. Journal of General Virology 70:2759–2764
    [Google Scholar]
  27. Rensing U. F. E., Schoenmakers J. G. G. 1973; A sequence of 50 nucleotides from coliphage R17 RNA. European Journal of Biochemistry 33:8–18
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences U.S.A: 745463–5467
    [Google Scholar]
  29. Smith H. O. 1980; Recovery of DNA from gels. Methods in Enzymology 65:371–380
    [Google Scholar]
  30. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  31. Uyeda I., Shikata E. 1984; Characterization of RNAs synthesized by the virion-associated transcriptase of rice dwarf virus in vitro . Virus Research 1:527–532
    [Google Scholar]
  32. Uyeda I., Matsumura T., Sano T., Ohshima K., Shikata E. 1987; Nucleotide sequence of rice dwarf virus genome segment 10. Proceedings of the Japan Academy 63:227–230
    [Google Scholar]
  33. Uyeda I., Kudo H., Takahashi T., Sano T., Ohshima K., Matsumura T., Shikata E. 1989; Nucleotide sequence of rice dwarf virus genome segment 9. Journal of General Virology 70:1297–1300
    [Google Scholar]
  34. Uyeda I., Lee S. Y., Leng G. W., Ao G. M., Deng Z. P., Liang X. S., Ohshima K., Shikata E. 1990; Size of dsRNA genome segments of rice dwarf and rice ragged stunt viruses determined by electron microscopy. Journal of Electron Microscopy 39:54–58
    [Google Scholar]
  35. Xu Z., Anzola J. B., Nuss D. L. 1989; Assignment of wound tumor virus nonstructural polypeptides to cognate dsRNA genome segments by in vitroexpression of tailored full-length cDNA clones. Virology 168:73–78
    [Google Scholar]
  36. Yokoyama M., Nozu Y., Fiashimoto J., Omura T. 1984; In vitrotranscription by RNA polymerase associated with rice gall dwarf virus. Journal of General Virology 65:533–538
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-10-2217
Loading
/content/journal/jgv/10.1099/0022-1317-71-10-2217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error