1887

Abstract

The sequences of cDNA clones encoding most of the Nib protein, the coat protein and the 3′ untranslated region of papaya ringspot virus (PRV) strains W and P have been determined. The open reading frame of P strain PRV was confirmed by amino acid analysis. Nucleotide sequence comparisons of these strains show that they share a 98·2% identity in their NI gene regions and a 97·7% identity in their coat protein genes. The sequences of these two strains are distinct from other potyvirus types, confirming their classification as two strains of the same virus. The NI amino acid sequence possesses conserved amino acids characteristic of RNA-dependent RNA polymerases. Comparison of the coat protein amino acid sequence with those of other potyviruses shows perfectly conserved amino acids which may have functional significance.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-1-203
1990-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/1/JV0710010203.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-1-203&mimeType=html&fmt=ahah

References

  1. Allison R., Johnston R. E., Dougherty W. G. 1986; The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein. Virology 154:9–20
    [Google Scholar]
  2. Carrington J. C., Dougherty W. G. 1987a; Processing of the tobacco etch virus 49K protease requires autoproteolysis. Virology 160:355–362
    [Google Scholar]
  3. Carrington J. C., Dougherty W. G. 1987b; Small nuclear inclusion protein encoded by a plant potyvirus genome is a protease. Journal of Virology 61:2540–2548
    [Google Scholar]
  4. Chang C.-A., Hiebert E., Purcifull D. E. 1988; Purification, characterization, and immunological analysis of nuclear inclusions induced by bean yellow mosaic and clover yellow vein potyviruses. Phytopathology 78:1266–1275
    [Google Scholar]
  5. Dayhoff M. O., Schwarz R. M., Circuit B. C. 1979; A model of evolutionary change in proteins. In Atlas of Protein Sequence and Structure 5 supplement 3 pp. 345–352 Dayhoff M. O. Edited by Washington D.C: National Biomedical Research Foundation;
    [Google Scholar]
  6. De Meija M. V. G., Hiebert E., Purcifull D. E., Thornbury D. W., Pirone T. P. 1985; Identification of potyviral amorphous inclusion protein as a nonstructural, virus-specific protein related to helper component. Virology 142:34–43
    [Google Scholar]
  7. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  8. Domier L. L., Franklin K. M., Shahabuddin M., Hellmann G. M., Overmeyer J. H., Hiremath S. T., Slaw M. F. E., Lomonssoff G. P., Shaw J. G., Rhoads R. E. 1986; The nucleotide sequence of tobacco vein mottling virus RNA. Nucleic Acids Research 14:5417–5430
    [Google Scholar]
  9. Domier L. L., Shaw J. G., Rhoads R. E. 1987; Potyviral proteins share amino acid sequence homology with picorna-, como-, and caulimoviral proteins. Virology 158:20–27
    [Google Scholar]
  10. Dougherty W. G., Allison R. F., Parks T. D., Johnston R. E., Feild M. J., Armstrong F. B. 1985; Nucleotide sequence at the 3′ terminus of pepper mottle virus genomic RNA: evidence for an alternative mode of potyvirus capsid protein gene organization. Virology 146:282–291
    [Google Scholar]
  11. Dougherty W. G., Carrington J. C., Cary S. M., Parks T. D. 1988; Biochemical and mutational analysis of a plant virus polyprotein cleavage site. EMBO Journal 7:1281–1287
    [Google Scholar]
  12. Eggenberger A. L., Stark D. M., Beachy R. N. 1989; The nucleotide sequence of a soybean mosaic virus coat protein-coding region and its expression in Escherichia coli, Agrobacterium tumefaciens and tobacco callus. Journal of General Virology 70:1853–1860
    [Google Scholar]
  13. Gonsalves D., Ishii M. 1980; Purification and serology of papaya ringspot virus. Phytopathology 70:1028–1032
    [Google Scholar]
  14. Gough K. H., Azad A. A., Hanna P. J., Shukla D. D. 1987; Nucleotide sequence of the capsid and nuclear inclusion protein genes from the Johnson grass strain of sugarcane mosaic virus RNA. Journal of General Virology 68:297–304
    [Google Scholar]
  15. Gubler U., Hoffman B. J. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  16. Hamilton W. D. O., Boccara M., Robinson D. J., Baulcombe D. C. 1987; The complete nucleotide sequence of tobacco rattle virus RNA-1. Journal of General Virology 68:2563–2575
    [Google Scholar]
  17. Kamer G., Argos P. 1984; Primary structural comparison of RNA-dependent polymerases from plant, animal, and bacterial viruses. Nucleic Acids Research 12:7269–7282
    [Google Scholar]
  18. Maiss E., Timpe U., Brisske A., Jelkmann W., Casper R., Himmler G., Mattanovich D., Katinger H. W. D. 1989; The complete nucleotide sequence of plum pox virus RNA. Journal of General Virology 70:513–524
    [Google Scholar]
  19. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  20. Nagel J., Hiebert E. 1985; Complementary DNA cloning and expression of the papaya ringspotpotyvirus sequences encoding capsid protein and a nuclear inclusion-like protein in Escherichia coli. Virology 143:435–441
    [Google Scholar]
  21. Purcifull D. E., Hiebert E. 1979; Serological distinction of watermelon mosaic virus isolates. Phytopathology 69:112–116
    [Google Scholar]
  22. Purcifull D. E., Edwardson J. R., Hiebert E., Gonsalves D. 1984; Papaya ringspot virus. CMI/AAB Descriptions of Plant Viruses84 revised
    [Google Scholar]
  23. Robaglia C., Durand-Tardif M., Tronchet M., Boudazin G., Astier-Manifacier S., Casse-Delbart F. 1989; Nucleotide sequence of potato virus Y (N strain) genomic RNA. Journal of General Virology 70:935–947
    [Google Scholar]
  24. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  25. Shukla D. D., Ward C. W. 1988; Amino acid sequence homology of coat proteins as a basis for identification and classification of the potyvirus group. Journal of General Virology 69:2703–2710
    [Google Scholar]
  26. Shukla D. D., Mckern N. M., Ward C. W. 1988a; Coat protein of potyviruses. 5. Symptomatology, serology, and coat protein sequences of three strains of passion fruit woodiness virus. Archives of Virology 102:221–232
    [Google Scholar]
  27. Shukla D. D., Strike P. M., Tracy S. L., Gough K. H., Ward C. W. 1988b; The N and C termini of the coat proteins of potyviruses are surface-located and the N terminus contains the major virus-specific epitopes. Journal of General Virology 69:1497–1508
    [Google Scholar]
  28. Shukla D. D., Thomas J. E., Mckern N. M., Tracey S. L., Ward C. W. 1988c; Coat protein of potyviruses. 4. Comparison of biological properties, serological relationships and coat protein amino acid sequences of four strains of potato virus Y. Archives of Virology 102:207–219
    [Google Scholar]
  29. Slightom J. L., Theisen T. W., Koop B. F., Goodman M. 1987; Orangutan fetal globin genes. Nucleotide sequences reveal multiple gene conversions during hominid phylogeny. Journal of Biological Chemistry 262:7472–7483
    [Google Scholar]
  30. Yeh S.-D., Gonsalves D. 1984; Evaluation of induced mutants of papaya ringspot virus for control by cross-protection. Phytopathology 74:1086–1091
    [Google Scholar]
  31. Yeh S.-D., Gonsalves D. 1985; Translation of papaya ringspot virus RNA in vitro: detection of a possible polyprotein that is processed for capsid protein, cylindrical-inclusion protein, and amorphous-inclusion protein. Virology 143:260–271
    [Google Scholar]
  32. Yeh S.-D., Gonsalves D., Provvidenti R. 1984; Comparative studies on host range and serology of papaya ringspot virus and watermelon mosaic virus 1. Phytopathology 74:1081–1085
    [Google Scholar]
  33. Zagursky R. J., Baumeister K., Lomax N., Berman M. L. 1985; Rapid and easy sequencing of large double-stranded DNA and supercoiled plasmid DNA. Gene Analytical Techniques 2:89–94
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-1-203
Loading
/content/journal/jgv/10.1099/0022-1317-71-1-203
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error