Antigen-presenting Capacity of Epidermal Cells Infected with Vaccinia Virus Recombinants Containing the Herpes Simplex Virus Glycoprotein D, and Protective Immunity Free

Abstract

Summary

We studied the association of herpes simplex type 1 (HSV-1) glycoprotein D (gD-1) expression in epidermal cells (EC) with virus-specific immunity and protection of mice from fatal HSV-2 challenge. Vaccinia virus recombinants containing gD-1 under the control of an early (VP176) or late (VP254) vaccinia virus promoter were used. Mature gD-1 protein was expressed in VP176-infected EC and they had accessory cell function for HSV-2-induced T cell proliferation of immune lymph node cells (LNC). It was not expressed in VP254-infected EC and they did not act as accessory cells. LNC from VP176- but not VP254-immunized mice proliferated in response to HSV antigen and only VP176-immunized mice had complete long-term protection from HSV-2 challenge.

Keyword(s): glycoprotein D , HSV and vaccinia virus
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-9-2513
1989-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/9/JV0700092513.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-9-2513&mimeType=html&fmt=ahah

References

  1. Aurelian L., Yasumoto S., Smith C. C. 1988; Antigen-specific immune-suppressor factor in herpes simplex virus type 2 infections of UV B-irradiated mice. Journal of Virology 62:2520–2524
    [Google Scholar]
  2. Bablanian R. 1984; Poxvirus cytopathogenicity: effects on cellular macromolecular synthesis. In Comprehensive Virology 19391–421 Fraenkel-Conrat H., Wagner R. R. New York: Plenum Press;
    [Google Scholar]
  3. Balachandran N., Bacchettt S., Rawls W. E. 1982; Protection against lethal challenge of BALB/c mice by passive transfer of monoclonal antibodies to five glycoproteins of herpes simplex virus type 2. Infection and Immunity 37:1132–1137
    [Google Scholar]
  4. Bertholet C., Drillien R., Wittek R. 1985; One hundred base pairs of 5’ flanking sequence of a vaccinia virus late gene are sufficient to temporally regulate late transcription. Proceedings of the National Academy of SciencesU.S.A. 82:2096–2100
    [Google Scholar]
  5. Buller R. M. L., Moss B. 1985; Genetic basis for vaccinia virus virulence. In Vaccinia Viruses as Vectors for Vaccine Antigens37–46 Quinnan G. V. JR Amsterdam: Elsevier;
    [Google Scholar]
  6. Cohen G. h., Long D., Ekenberg R. J. 1980; Synthesis and processing of glycoprotein gD and gC of herpes simplex virus type 1. Journal of Virology 36:429–439
    [Google Scholar]
  7. Coupar B. E. H., Andrew M. E., Both G. W., Boyle D. B. 1986; Temporal regulation of influenza hemagglutinin expression in vaccinia virus recombinants and effects on the immune response. European Journal of Immunology 16:1479–1487
    [Google Scholar]
  8. Cremer K. J., Mackett M., Wohlenberg C., Notkins A. L., Moss B. 1985; Vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D prevents latent herpes in mice. Science 228:737–739
    [Google Scholar]
  9. Eisenberg R. J., Ponce de leon M., Pereira L., Long D., Cohen G. H. 1982; Purification of glycoprotein gD of herpes simplex virus types 1 and 2 by use of monoclonal antibody. Journal of Virology 41:1099–1104
    [Google Scholar]
  10. Friedman R. M., Baron S., Buckler C. E., Steinmuller R. L. 1962; The role of antibody, delayed hypersensitivity, and interferon production in recovery of guinea pigs from primary infection with vaccinia virus. Journal of Experimental Medicine 116:347–356
    [Google Scholar]
  11. Hayashi Y., Aurelian L. 1986; Immunity to herpes simplex virus type 2: viral antigen presenting capacity of epidermal cells and its impairment by ultraviolet irradiation. Journal of Immunology 136:1087–1092
    [Google Scholar]
  12. Howes E. L., Taylor W., Mitchison N. A., Simpson E. 1979; MHC matching shows that at least two T-cell subsets determine resistance to HSV. Nature London: 27767–68
    [Google Scholar]
  13. Hruby D. E., Ball L. A. 1982; Mapping and identification of the vaccinia virus thymidine kinase gene. Journal of Virology 43:403–409
    [Google Scholar]
  14. Kotwal G. J., Moss B. 1988; Analysis of a large cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167:524–537
    [Google Scholar]
  15. Martin S., Rouse B. T. 1987; The mechanism of antiviral immunity induced by a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: clearance of local infection. Journal of Immunology 138:3431–3437
    [Google Scholar]
  16. Mills K. H. G. 1986; Processing of viral antigens and presentation to class II-restricted T cells. Immunology Today 7:260–263
    [Google Scholar]
  17. Nash A. A., Jayasuriya A., Phelan J., Cobbold S. P., waldmann H., Prospero T. 1987; Different roles for L3T4+ and Lyt 2+ T cell subsets in the control of an acute herpes simplex virus infection of the skin and nervous system. Journal of General Virology 68:825–833
    [Google Scholar]
  18. Natuk R. J., Holowczak J. A. 1985; Vaccinia virus proteins on the plasma membrane of infected cells. III. Infection of peritoneal macrophages. Virology 147:354–372
    [Google Scholar]
  19. Panicali D., Davis S. W., Mercer S. R., Paoletti E. 1981; Two major DNA variants present in serially propagated stocks of WR strain of vaccinia virus. Journal of Virology 37:1000–1010
    [Google Scholar]
  20. Stingl G., Tawaki K., Katz S. I. 1980; Origin and function of epidermal Langerhans cells. Immunology Review 53:149–174
    [Google Scholar]
  21. Wachsman M., Aurelian L., Smith C. C., Lipinskas B. R., Perkus M. E., Paoletti e. 1987; Protection of guinea pigs from primary and recurrent herpes simplex virus (HSV) type 2 cutaneous disease with vaccinia virus recombinants expressing HSV glycoprotein D. Journal of Infectious Diseases 155:1188–1197
    [Google Scholar]
  22. Wachsman M., Aurelian L., Hunter J. C. R., Perkus M. E., Paoletti E. 1988; Expression of herpes simplex virus glycoprotein D on antigen presenting cells infected with vaccinia recombinants and protective immunity. Bioscience Reports 8:323–334
    [Google Scholar]
  23. Watson R. J., enquist L. W. 1985; Genetically engineered herpes simplex virus vaccines. Progress in Medical Virology 31:84–108
    [Google Scholar]
  24. Watson R. J., Weis J. H., Salstrom J. S., Enquist L. W. 1982; Herpes simplex virus type 1 glycoprotein D gene: nucleotide sequence and expression in Escherichia coli. Science 218:381–384
    [Google Scholar]
  25. Weir J. P., Moss B. 1984; Regulation of expression and nucleotide sequence of a late vaccinia virus gene. Journal of Virology 51:662–669
    [Google Scholar]
  26. Yasumoto S., Okabe N., Mori R. 1986; Role of epidermal Langerhans cells in resistance to herpes simplex virus infection. Archives of Virology 90:261–271
    [Google Scholar]
  27. Yasumoto S., Hayashi Y., Smith C. C., Aurelian L. 1987; Immunity to herpes simplex virus type 2: suppressor cell subpopulations and soluble suppressor factors in ultraviolet irradiated mice. Journal of Immunology 139:2788–2793
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-9-2513
Loading
/content/journal/jgv/10.1099/0022-1317-70-9-2513
Loading

Data & Media loading...

Most cited Most Cited RSS feed