1887

Abstract

Summary

Previously we have described the isolation of seven monoclonal antibodies (MAbs) and two polyvalent rabbit sera directed against the product of herpes simplex virus type 1 (HSV-1) gene UL42, a 65K DNA-binding protein (65K) which is essential for HSV DNA replication and virus growth. We now report the synthesis of all 483 overlapping hexapeptides of this 488 amino acid protein and describe their use for the identification of epitopes recognized by these MAbs and polyvalent sera. MAb 6898, derived from one fusion, recognizes the peptides EDLDGAand DLDGAA which correspond to amino acids 363 to 369 of 65K. MAbs Z4D4, Z6F3, Z1A8, Z10C1, Z3H12 and Z1F11, derived from a second fusion, all recognize the peptides GDPEDL and DPEDLD which correspond to amino acids 360 to 366. As expected both polyvalent sera recognize several different epitopes.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-9-2357
1989-09-01
2021-10-22
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/9/JV0700092357.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-9-2357&mimeType=html&fmt=ahah

References

  1. Atherton E., Gait M. J., Sheppard R. C., Williams B. J. 1979; The polyamide method of solid phase peptide and oligonucleotide synthesis. Bioorganic Chemistry 8:351–370
    [Google Scholar]
  2. Bayliss G. J., Marsden H. S., Hay J. 1975; Herpes simplex virus proteins: DNA-binding proteins in infected cells and in the virus structure. Virology 68:124–134
    [Google Scholar]
  3. Brown S. M., Ritchie D. A., Subak-sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  4. Challberg M. D. 1986; A method for identifying the viral genes required for herpesvirus DNA replication. Proceedings of the National Academy of SciencesU.S.A. 83:9094–9098
    [Google Scholar]
  5. Gallo M. L., Jackwood D. H., Murphy M., Marsden H. S., Parris D. S. 1988; Purification of the HSV-1 65 kilodalton DNA binding protein: properties of the protein and evidence of its association with the viral encoded DNA polymerase. Journal of Virology 62:2874–2883
    [Google Scholar]
  6. Geysen H. M., Meloen R. H., Barteling S. J. 1984; Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. Proceedings of the National Academy of SciencesU.S.A 81:3998–4002
    [Google Scholar]
  7. Gibbs J. S., Chiou H. C., Hall J. D., Mount D. W., Retondo M. J., Weller S. K., Coen D. M. 1985; Sequence and mapping analyses of the herpes simplex virus DNA polymerase gene predict a C-terminal substrate binding domain. Proceedings of the National Academy of SciencesU.S.A. 82:7969–7973
    [Google Scholar]
  8. Goodrich L. D., Rixon F. J., Parris D. S. 1989; Kinetics and expression of the gene encoding the 65 kilodalton DNA binding protein of herpes simplex virus type 1. Journal of Virology 63:137–147
    [Google Scholar]
  9. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of SciencesU.S.A 78:3824–3828
    [Google Scholar]
  10. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  11. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature London: 227680–685
    [Google Scholar]
  12. Mcgeoch D. J., Dalrymple M. A., Dolan A., Mcnab D., Perry L. J., Taylor P., Challberg M. D. 1988a; Structures of herpes simplex type 1 genes required for replication of virus DNA. Journal of Virology 62:444–453
    [Google Scholar]
  13. Mcgeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., Mcnab D., Perry L. J., Scott J. E., Taylor P. 1988b; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1574
    [Google Scholar]
  14. Macpherson I., Stoker M. G. 1962; Polyoma transformation of hamster cell clones—an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  15. Marchetti M. E., Smith C. A., Schaffer P. A. 1988; A temperature-sensitive mutation in a herpes simplex virus type 1 gene required for viral DNA synthesis maps to coordinates 0·609 through 0·614 in UL. Journal of Virology 62:715–721
    [Google Scholar]
  16. Marsden H. S., Campbell M. E. M., Haarr L., Frame M. C., Parris D. S., Murphy M., Hope R. G., Muller M. T., Preston C. M. 1987; The 65,000-Mr DNA-binding and virion trans-inducing proteins of herpes simplex virus type 1. Journal of Virology 61:2428–2437
    [Google Scholar]
  17. Parris D. S., Cross A., Haarr L., Orr A., Frame M. C., Murphy M., Mcgeoch D. J., Marsden H. S. 1988; Identification of the gene encoding the 65-kilodalton DNA-binding protein of herpes simplex virus type 1. Journal of Virology 62:818–825
    [Google Scholar]
  18. Quinn J. P., Mcgeoch D. J. 1985; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Research 13:8143–8163
    [Google Scholar]
  19. Schenk P., Ludwig H. 1988; The 65K DNA binding protein appears early in HSV-1 replication. Archives of Virology 102:119–123
    [Google Scholar]
  20. Schenk P., Pietschmann S., Gelderblom h., Pauli G., Ludwig H. 1988; Monoclonal antibodies against herpes simplex virus type 1-infected nuclei defining and localizing the ICP8 protein, 65K DNA-binding protein and polypeptides of the ICP35 family. Journal of General Virology 6999–111 corrigendum 967;
    [Google Scholar]
  21. Sheppard R. C. 1983; Continuous flow methods in organic synthesis. Chemistry in Britain 19:402–413
    [Google Scholar]
  22. Van loon A. E., Ligtenberg M., Reemst A. M. C. B., Sussenbach J. S., Rozijn T. H. 1987; Structure and organization of the left-terminal DNA regions of fastidious adenovirus types 40 and 41. Gene 58:109–126
    [Google Scholar]
  23. Vaughan P. J., Banks L. M., Purifoy D. J. M., Powell K. L. 1984; Interactions between herpes simplex virus DNA-binding proteins. Journal of General Virology 65:2033–2041
    [Google Scholar]
  24. Vaughan P. J., Purifoy D. J. M., Powell K. L. 1985; DNA-binding protein associated with herpes simplex virus DNA polymerase. Journal of Virology 53:501–508
    [Google Scholar]
  25. Wu C. A., Nelson N. J., Mcgeoch D. J., Challberg M. D. 1988; Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. Journal of Virology 62:435–443
    [Google Scholar]
  26. Zweig M., Heilman C. J. JR, Rabin H., Hampar B. 1980; Shared antigenic determinants between two distinct classes of proteins in cells infected with herpes simplex virus. Journal of Virology 35:644–652
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-9-2357
Loading
/content/journal/jgv/10.1099/0022-1317-70-9-2357
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error