1887

Abstract

Summary

Nucleotide sequencing of a region of the vaccinia virus genome proximal to the right inverted terminal repeat (ITR) identified two open reading frames (ORFs) encoding proteins of 39K and 40K with amino acid homology to each other, to another vaccinia virus gene near the opposite end of the virus genome and to the superfamily of serine proteinase inhibitors (serpins). Serpins have now been found in poxviruses from the genera orthopox (cowpox and vaccinia viruses), leporipox (myxoma virus) and avipox (fowlpox virus). One of the vaccinia virus serpins identified here (B13R) shares 92% amino acid identity with the serpin from cowpox virus and 46% and 19% identity with vaccinia serpins B24R and K2L, respectively. The amino acid sequence of B13R reported here differs at 11 positions from a recently reported sequence and contains an additional three internal residues. The serpin genes near the right ITR are separated by 8 kb of DNA. Both genes contain early transcriptional termination signals just downstream of the ORFs and are transcribed in a rightward direction towards the end of the genome. Analysis of mRNAs from virus-infected cells demonstrated that all three vaccinia virus serpin genes are transcribed early during infection. The amino acid sequences at the active sites of these serpins suggest that they may inhibit serine proteinases of differing biochemical specificities. The possible functions of these genes are discussed.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-9-2333
1989-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/9/JV0700092333.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-9-2333&mimeType=html&fmt=ahah

References

  1. Ackrill A. M., Blair G. E. 1988; Regulation of major histocompatibility class I gene expression at the level of transcription in highly oncogenic adenovirus transformed rat cells. Oncogene 3:483–487
    [Google Scholar]
  2. Baldick C. J., Moss B. 1987; Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH2 terminus of a gene encoding an Mr 62000 polypeptide. Virology 156:138–145
    [Google Scholar]
  3. Bankier A., Barrell B. G. 1983; Shotgun DNA sequencing. In Techniques in Life Sciences (Biochemistry) B5 Techniques in Nucleic Acid Biochemistry 1–34 Flavell R. A. Amsterdam: Elsevier;
    [Google Scholar]
  4. Bernards R., Schrier P. I., Houweling A., Bos J. L., Van der eb A. J., Zulstra M., Melief C. J. M. 1983; Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. Nature London: 305776–779
    [Google Scholar]
  5. Biggin M. D., Gibson T. J., Hong G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of SciencesU.S.A. 80:3693–3695
    [Google Scholar]
  6. Boursnell M. E. G., Foulds I. J., Campbell J. I., Binns M. M. 1988; Non-essential genes in the vaccinia virus HindIII K fragment: a gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. Journal of General Virology 69:2995–3003
    [Google Scholar]
  7. Buller R. M. L., Smith G. L., Cremer K., Notkins A., Moss B. 1985; Decreased virulence of recombinant vaccinia virus expression vectors is associated with a thymidine kinase-negative phenotype. Nature London: 317813–815
    [Google Scholar]
  8. Buller R. M. L., Chakrabarti S., Cooper J., Twardzik D., Moss B. 1988; Deletion of the vaccinia virus growth factor gene reduces virus virulence. Journal of Virology 62:866–874
    [Google Scholar]
  9. Carrell R. W., Jeppsson J. -O., Laurell C. B., Brennan S. O., Owen M. L., Vaughan L., Boswell D. R. 1982; Structure and variation of human alpha-1-antitrypsin. Nature London: 298329–334
    [Google Scholar]
  10. Carrell R. W., Pemberton P. A., Boswell D. R. 1987; The serpins: evolution and adaptation in a family of protease inhibitors. Cold Spring Harbor Symposia on Quantitative Biology 52:527–535
    [Google Scholar]
  11. Condit R. C., Motyczka A., Spizz G. 1983; Isolation, characterization and physical mapping of temperature-sensitive mutants of vaccinia virus. Virology 113:224–241
    [Google Scholar]
  12. Coupar B. E., Andrew M. E., Both G. W., Boyle D. B. 1986; Temporal regulation of influenza haemagglutin expression in vaccinia virus recombinants and effects on the immune response. European Journal of Immunology 16:1479–1487
    [Google Scholar]
  13. Earl P., Moss B. 1987; Vaccinia virus. In Genetic Maps 4116–123 O’Brien S. J. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Esposito J. J., Cabradilla C. D., Nakano J. H., Obijeski I. F. 1981; Intragenomic sequence transposition in monkeypox virus. Virology 10:231–243
    [Google Scholar]
  15. Flexner C., Hugin A., Moss B. 1987; Prevention of vaccinia virus infection of immunodeficient mice by vector-directed IL-2 expression. Nature London: 330259–262
    [Google Scholar]
  16. Gillard S., Spehner D., Drillien R., Kirn A. 1986; Localization and sequence of a vaccinia virus gene required for multiplication in human cells. Proceedings of the National Academy of SciencesU.S.A 83:5573–5577
    [Google Scholar]
  17. Kotwal G. J., Moss B. 1988a; Analysis of a cluster of nonessential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167:524–537
    [Google Scholar]
  18. Kotwal G. J., Moss B. 1988b; Vaccinia virus encodes a secretory polypeptide structurally related to complement control proteins. Nature London: 335176–178
    [Google Scholar]
  19. Kotwal G. J., Moss B. 1989; Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. Journal of Virology 63:600–606
    [Google Scholar]
  20. Lane I. M., Ruben F. L., Neff J. m., Millar J. D. 1969; Complications of smallpox vaccination, 1968. National surveillance in the United States. New England Journal of Medicine 281:1201–1208
    [Google Scholar]
  21. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  22. Mcgeoch D. J. 1985; On the predictive recognition of signal peptide sequences. Virus Research 3:271–286
    [Google Scholar]
  23. Mackett M., Archard L. C. 1979; Conservation and variation in Orthopoxvirus genome structure. Journal of General Virology 45:683–701
    [Google Scholar]
  24. Moss B. 1985; Replication of poxviruses. In Virology658–703 Fields B. N, Fields D. K., Chanock R. M. New York: Raven Press;
    [Google Scholar]
  25. Moyer R. W., Graves R. L., Rothe C. T. 1980; The white pock (u) mutants of rabbit poxvirus. III. Terminal DNA sequence duplication and transposition in rabbit poxvirus. Cell 22:545–553
    [Google Scholar]
  26. Paabo S., Weber F., Nilsson T., Schaffner W., Petersson P. A. 1986; Structural and functional dissection of an MHC class I antigen-binding adenovirus glycoprotein. EMBO Journal 5:1921–1927
    [Google Scholar]
  27. Panicali D., Davis S. W., Mercer S. R., Paoletti E. 1981; Two major DNA variants present in serially propagated stocks of the WR strain of vaccinia virus. Journal of Virology 37:1000–1010
    [Google Scholar]
  28. Panicali D., Davis S. W., Weinberg R. L., Paoletti E. 1983; Construction of live vaccines using genetically engineered poxviruses: biological activity of recombinant vaccinia virus expressing the influenza virus hemagglutinin. Proceedings of the National Academemy of SciencesU.S.A 80:5364–5368
    [Google Scholar]
  29. Perkus M. E., Panicali D., Mercer S., Paoletti E. 1986; Insertion and deletion mutants of vaccinia virus. Virology 152:285–297
    [Google Scholar]
  30. Pickup D. J., Ink B. S., Parsons B. L., Hu W., Joklik W. K. 1984; Spontaneous deletions and duplication of sequences in the genome of cowpox virus. Proceedings of the National Academy of SciencesU.S.A. 81:6817–6821
    [Google Scholar]
  31. Pickup D. J., Ink B. S., Hu W., ray c. a., Joklik W. K. 1986; Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. Proceedings of the National Academy of SciencesU.S.A 83:7698–7702
    [Google Scholar]
  32. Rosel J., Earl P. J., Weir J., moss B. 1986; Conserved TAAATG sequence at the transcriptional and translational initiation sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment. Journal of Virology 60:436–449
    [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of SciencesU.S.A 74:5463–5467
    [Google Scholar]
  34. Schrier P. I., Barnards R., Vaessen R. T. M. J., Houweling A., van der eb A. J. 1983; Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. Nature London: 305771–775
    [Google Scholar]
  35. Smith G. L., Mackett M., Moss B. 1983; Infectious vaccinia virus recombinants that express hepatitis B surface antigen. Nature London: 302490–495
    [Google Scholar]
  36. Staden R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  37. Tomley F., Binns M., Campbell J., Boursnell M. 1988; Sequence analysis of an 11·2 kilobase, near-terminal, BamHI fragment of fowlpox virus. Journal of General Virology 69:1025–1040
    [Google Scholar]
  38. Townsend A. R. M., Bastin J., Gould K., Brownlee G. G., Andrew M. E., Boyle D. B., Chan Y. S., Smith G. L. 1988; Defective presentation to class I restricted CTL in vaccinia infected cells is overcome by enhanced degradation of antigen. Journal of Experimental Medicine 168:1211–1224
    [Google Scholar]
  39. Upton C., Carrell R. W., Mcfadden G. 1986; A novel member of the serpin superfamily is encoded on a circular plasmid-like DNA species isolated from rabbit cells. FEBS Letters 207:115–120
    [Google Scholar]
  40. Yuen L., Moss B. 1987; Oligonucleotide sequence signaling transcriptional termination of vaccinia virus early genes. Proceedings of the National Academy of SciencesU.S.A 84:6417–6421
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-9-2333
Loading
/content/journal/jgv/10.1099/0022-1317-70-9-2333
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error