1887

Abstract

SUMMARY

Cotransfection experiments have been carried out using recombinant plasmids pAG60, conferring resistance to antibiotic G418, and pXho3 which contains the left end subfragment (map coordinates 0·583 to 0·596) of the transforming herpes simplex virus type 2 II N DNA fragment and encodes the 36K polypeptide associated with the viral ribonucleotide reductase activity. Several NIH 3T3 cell clones resistant to G418 and having morphological changes commonly observed for transformed NIH 3T3 cells were isolated and examined for the presence and stable retention of the viral sequences. Seven of the clones that retained the transfected viral sequences were analysed for the expression of the 36K polypeptide and the tumorigenic phenotype. The results gathered from these studies show that neither the retention of the viral DNA nor the expression of the 36K polypeptide correlated with tumorigenic conversion of these cells.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-8-2171
1989-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/8/JV0700082171.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-8-2171&mimeType=html&fmt=ahah

References

  1. Bacchetti S., Evelegh M. J., Muirhead B., Sartori C. S., & Huszar D. 1984; Immunological characterization of herpes simplex virus type 1 and 2 polypeptide(s) involved in viral ribonucleotide reductase. Journal of Virology 49:591–593
    [Google Scholar]
  2. Bacchetti S., Evelegh M. J., Muirhead B. 1986; Identification and separation of the two subunits of the herpes simplex virus ribonucleotide reductase. Journal of Virology 57:1177–1188
    [Google Scholar]
  3. Blair D. G., Cooper C. S., Oskarson M. K., Eader L. A., Vande woude G. F. 1982; New method for detecting cellular transforming genes. Science 218:1122–1124
    [Google Scholar]
  4. Brandt C. R., Buonaguro F. M., Mcdougall J. K., Galloway D. A. 1987; Plasmid mediated mutagenesis of a cellular gene in transfected eukaryotic cells. Nucleic Acids Research 15:563–573
    [Google Scholar]
  5. Cameron I. R., Park M., Dutia B. M., orr A., Macnab J. C. M. 1985; Herpes simplex virus sequences involved in the initiation of oncogenic morphological transformation of rat cells are not required for maintenance of the transformed state. Journal of General Virology 66:517–527
    [Google Scholar]
  6. Cohen E. A., Charron I., Perret J., Langelier Y. 1985; Herpes simplex virus ribonucleotide reductase induced in infected BHK-21/C13 cells: biochemical evidence for the existence of two non-identical subunits, H1 and H2. Journal of General Virology 66:733–745
    [Google Scholar]
  7. Cohen E. A., Gaudreau P., Brazeau P., Langelier Y. 1986; Neutralization of herpes simplex ribonuclease reductase activity by an oligopeptide-induced antiserum directed against subunit 2. Journal of Virology 60:1130–1133
    [Google Scholar]
  8. Colbère-Garapin F., Horodniceanu F., Kourilsky P., Garapin A. C. 1981; A new dominant hybrid selective marker for higher eukaryote cells. Journal of Molecular Biology 150:1–14
    [Google Scholar]
  9. Duff R., Rapp F. 1977; Oncogenic transformation of hamster cells after exposure to herpes simplex virus type 2. Nature New Biology 233:48–50
    [Google Scholar]
  10. Dutia B. M. 1983; Ribonucleotide reductase induced by herpes simplex virus has a virus-specified constituent. Journal of General Virology 64:513–521
    [Google Scholar]
  11. Galloway D. A., McDougall J. K. 1981; Transformation of rodent cells by a cloned DNA fragment of herpes simplex virus type 2. Journal of Virology 38:749–760
    [Google Scholar]
  12. Galloway D. A., Swain M. A. 1984; Organization of the left-hand end of the herpes simplex virus type 2 BglII N fragment. Journal of Virology 49:724–730
    [Google Scholar]
  13. Galloway D. A., , Goldstein L. C., Lewis J. B. 1982; Identification of proteins encoded by a fragment of herpes simplex virus type 2 DNA that has transforming activity. Journal of Virology 42:530–537
    [Google Scholar]
  14. Galloway D. A., Nelson J. A., McDougall J. K. 1984; Small fragments of herpesvirus DNA with transforming activity contain insertionsequence like structures. Proceedings of the National Academy of SciencesU.S.A. 81:4736–4740
    [Google Scholar]
  15. Hayashi Y., Iwasaka T., Smith C. C., Aurelian L., Lewis G. K., Ts’O P. O. P. 1985; Multistep transformation by defined fragments of herpes simplex virus type 2 DNA: oncogenic region and its gene product. Proceedings of the National Academy of SciencesU.S.A. 82:8493–8497
    [Google Scholar]
  16. Huszar D., Bacchetti S. 1983; Is ribonucleotide reductase the transforming function of herpes simplex virus 2?. Nature London: 30276–79
    [Google Scholar]
  17. Jariwalla R. J., Aurelian L., Ts’O P. O. P. 1980; Tumorigenic transformation induced by a specific fragment of DNA from herpes simplex virus type 2. Proceedings of the National Academy of SciencesU.S.A 77:2279–2283
    [Google Scholar]
  18. Jariwalla R. J., Aurelian L., Ts’O P. O. P. 1983; Immortalization and neoplastic transformation of normal diploid cells by defined cloned DNA fragments of herpes simplex virus type 2. Proceedings of the National Academy of SciencesU.S.A. 80:5902–5906
    [Google Scholar]
  19. Jariwalla R. J., Tanczos B., Jones C, Ortiz J., Salimi-Lopez S. 1986; DNA amplification and neoplastic transformation mediated by a herpes simplex DNA fragment containing cell-related sequences. Proceedings of the National Academy of SciencesU.S.A. 83:1738–1742
    [Google Scholar]
  20. Jenkins F. J., Howett M. K. 1984; Characterization of mRNA that map in the BglII N fragment of the herpes simplex virus type 2 genome. Journal of Virology 52:99–107
    [Google Scholar]
  21. Kessous A., Bibor-Hardy V., Suh M., Simard R. 1979; Analysis of chromosome nucleic acids and polypeptides in hamster cells transformed by herpes simplex type 2. Cancer Research 39:3225–3234
    [Google Scholar]
  22. Kimura S., Flannery V. L., Levy B., schaffer P. A. 1975; Oncogenic transformation of primary hamster cells by herpes simplex virus type 2 (HSV-2) and HSV-2 temperature sensitive mutant. International Journal of Cancer 5:786–798
    [Google Scholar]
  23. Macnab J. C. M. 1974; Transformation of rat embryo cells by temperature sensitive mutants of herpes simplex virus. Journal of General Virology 24:143–153
    [Google Scholar]
  24. McLaughlan J., Clements J. B. 1983; DNA sequence homology between colinear loci on the HSV genome which have different transforming abilities. EMBO Journal 2:1953–1961
    [Google Scholar]
  25. Pilon L., Kessous-Elbaz A., Langelier Y., Royal A. 1989; Transformation of NIH 3T3 cells by herpes simplex type 2 BglII N fragment and subfragments is independent from induction of mutation at the hprt locus. Biochemical and Biophysical Research Communications 159:1249–1255
    [Google Scholar]
  26. Preston V. G., Palfreyman J. W., Dutia B. M. 1984; Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotide reductase. Journal of General Virology 65:1457–1466
    [Google Scholar]
  27. Reyes G. R., Lafemina r., Hayward S. D., Hayward G. S. 1979; Morphological transformation by DNA fragments of human herpesvirus: evidence for two distinct transforming regions in HSV-1 and HSV-2 and the lack of correlation with biochemical transfer of the thymidine kinase gene. Cold Spring Harbor Symposia on Quantitative Biology 44:629–641
    [Google Scholar]
  28. Saavedra C. A., Kessous-Elbaz A. 1985; Retention of herpes virus simplex type 2 sequences in BglII N transformed cells after cotransfection with a selectable marker. EMBO Journal 4:3419–3426
    [Google Scholar]
  29. Suh M., Kessous A., Poirier N., Simard R. 1980; Immunoprecipitation of polypeptides from hamster embryo cells transformed by herpes simplex virus type 2. Virology 104:303–311
    [Google Scholar]
  30. Suh M., , Chauvin, C, Filion M., Shore G. C., Frost E. 1983; Localization of the coding region for a 35000 dalton polypeptide on the genome of herpes simplex virus type 2. Journal of General Virology 64:2079–2085
    [Google Scholar]
  31. Swain M. A., Galloway D. A. 1986; Herpes simplex virus specifies two subunits of ribonucleotide reductase encoded by 3′-coterminal transcripts. Journal of Virology 57:802–808
    [Google Scholar]
  32. Towbin H., Staehelin H., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of SciencesU.S.A. 76:5350–5354
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-8-2171
Loading
/content/journal/jgv/10.1099/0022-1317-70-8-2171
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error