1887

Abstract

SUMMARY

Expression of antigenic fragments of the Japanese encephalitis virus envelope protein (E) in has been used to define the boundaries of an antigenic domain that contains the binding sites for 10 anti-E monoclonal antibodies (MAbs). All of these antibodies neutralized the virus and some of them passively protected mice from a fatal virus challenge. We have shown previously that nine of these antibodies react with the antigenic determinants encoded by a 405 bp fragment of viral cDNA. To determine the amino acid sequences of specific determinants, truncated polypeptides were expressed as fusion proteins in following progressive Bal 31 exonuclease digestion of the 5′ and 3′ ends of the cDNA fragment. Examination of the immunoreactivity of these polypeptides revealed that the region from methionine 303 to tryptophan 396 was the shortest sequence capable of reacting with any of the 10 MAbs or with a polyclonal, antiviral hyperimmune mouse ascitic fluid. Biochemical tests showed that an intramolecular disulphide cross-linkage between cysteine 304 and cysteine 335 of the E protein sequence was required for presentation of the binding site(s) for these MAbs. Although this 95 amino acid antigenic domain appeared to be capable of forming several conformational neutralizing epitopes, it was not an effective immunogen for inducing neutralizing or protective antibodies in mice.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-8-2037
1989-08-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/8/JV0700082037.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-8-2037&mimeType=html&fmt=ahah

References

  1. Blake M. S., Johnston K. H., Russell-Jones G. J., Gotschlich E. C. 1984; A rapid, sensitive method for detection of alkaline phosphatase-conjugated anti-antibody on western blots. Analytical Biochemistry 136:175–179
    [Google Scholar]
  2. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. Journal of Molecular Biology 41:459–472
    [Google Scholar]
  3. Brandt W. E., Buescher E. L., Hetrick F. M. 1967; Production and characterization of arbovirus antibody in mouse ascitic fluid. American Journal of Tropical Medicine and Hygiene 16:339–347
    [Google Scholar]
  4. Burke D. S., Nisalak A., Gentry M. K. 1987; Detection of flavivirus antibodies in human sera by epitope-blocking immunoassay. Journal of Medical Virology 23:165–173
    [Google Scholar]
  5. Cammack N., Gould E. A. 1986; Topographical analysis of epitope relationships on the envelope glycoprotein of yellow fever 17D vaccine and the wild type Asibi parent virus. Virology 150:333–341
    [Google Scholar]
  6. Clarke D. H., Casals J. 1958; Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. American Journal of Tropical Medicine and Hygiene 7:561–573
    [Google Scholar]
  7. Coia G., Parker M. D., Speight G., Byrne M. E., Westaway E. G. 1988; Nucleotide and complete amino acid sequences of Kunjin virus: definitive gene order and characteristics of the virus-specified proteins. Journal of General Virology 69:1–21
    [Google Scholar]
  8. Dalgarno L., Trent D. W., Strauss J. H., Rice C. M. 1986; Partial nucleotide sequence of the Murray Valley encephalitis virus genome: comparison of the encoded polypeptides with yellow fever virus structural and nonstructural proteins. Journal of Molecular Biology 187:309–323
    [Google Scholar]
  9. Deubel V., Kinney R. M., Trent D. W. 1986; Nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue type 2 virus, Jamaica genotype. Virology 155:365–377
    [Google Scholar]
  10. Dieckmann C. L., Tzagoloff A. 1985; Assembly of the mitochondrial membrane system. CBP6, a yeast nuclear gene necessary for synthesis of cytochrome b. Journal of Biological Chemistry 260:1513–1520
    [Google Scholar]
  11. Engvall E. 1980; Enzyme immunoassay ELISA and EMIT. Methods in Enzymology 70:419–139
    [Google Scholar]
  12. Gentry M. K. 1985; Cloning of hybridomas on semisolid agarose. Journal of Tissue Culture Methods 9:179–180
    [Google Scholar]
  13. Gentry M. K., Henchal E. A., Mccown J. M., Brandt W. E., Dalrymple J. M. 1982; Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. American Journal of Tropical Medicine and Hygiene 31:548–555
    [Google Scholar]
  14. Gruenberg A., Woo W. S., Biedrzycka A., Wright P. J. 1988; Partial nucleotide sequence and deduced amino acid sequence of the structural proteins of dengue virus type 2, New Guinea C and PUO-218 strains. Journal of General Virology 69:1391–1398
    [Google Scholar]
  15. Hahn Y. S., Galler R., Hunkapiller T., Dalrymple J. M., Strauss J. H., Strauss E. G. 1988; Nucleotide sequence of dengue 2 RNA and comparison of the encoded proteins with those of other flaviviruses. Virology 162:167–180
    [Google Scholar]
  16. Hawkes R. A., Roehrig J. T., Hunt A. R., Moore G. A. 1988; Antigenic structure of the Murray Valley encephalitis virus E glycoprotein. Journal of General Virology 69:1105–1109
    [Google Scholar]
  17. Heinz F. X., Berger R., Tuma W., Kunz C. 1983a; A topological and functional model of epitopes on the structural glycoprotein of tick-borne encephalitis virus defined by monoclonal antibodies. Virology 126:525–537
    [Google Scholar]
  18. Heinz F. X., Berger R., Tuma W., Kunz C. 1983b; Location of immunodominant antigenic determinants on fragments of the tick-borne encephalitis virus glycoprotein: evidence for two different mechanisms by which antibodies mediate neutralization and hemagglutination inhibition. Virology 130:485–501
    [Google Scholar]
  19. Heinz F. X., Tuma W., Guirakhoo F., Berger R., Kunz C. 1984a; Immunogenicity of tick-borne encephalitis virus glycoprotein fragments: epitope-specific analysis of the antibody response. Journal of General Virology 65:1921–1929
    [Google Scholar]
  20. Heinz F. X., Mandl C, Berger R., Tuma W., Kunz C. 1984b; Antibody-induced conformational changes result in enhanced avidity of antibodies to different antigenic sites on the tick-borne encephalitis virus glycoprotein. Virology 133:25–34
    [Google Scholar]
  21. Henchal E. A., Mccown J. M., Burke D. S., Seguin M. C., Brandt W. E. 1985; Epitopic analysis of antigenic determinants on the surface of dengue-2 virions using monoclonal antibodies. American Journal of Tropical Medicine and Hygiene 34:162–169
    [Google Scholar]
  22. Kaufman B. M., Summers P. L., Dubois D. R., Eckels K. H. 1987; Monoclonal antibodies against dengue 2 virus E-glycoprotein protect mice against lethal dengue infection. American Journal of Tropical Medicine and Hygiene 36:427–434
    [Google Scholar]
  23. Kimura T., Ohyama A. 1988; Association between the pH-dependent conformational change of West Nile flavivirus E protein and virus-mediated membrane fusion. Journal of General Virology 69:1247–1254
    [Google Scholar]
  24. Kimura-kuroda J., Yasui K. 1983; Topographical analysis of antigenic determinants on envelope glycoprotein V3 (E) of Japanese encephalitis virus, using monoclonal antibodies. Journal of Virology 45:124–132
    [Google Scholar]
  25. Kimura-kuroda J., Yasui K. 1986; Antigenic comparison of envelope protein E between Japanese encephalitis virus and some other flaviviruses using monoclonal antibodies. Journal of General Virology 67:2663–2672
    [Google Scholar]
  26. Kleid D. G., Yansura D., Small B., Dowbenko D., Moore D. M., Grubman M. J., Mckercher P. D., Morgan D. O., Robertson B. H., Bachrach H. L. 1981; Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine. Science 214:1125–1129
    [Google Scholar]
  27. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  28. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature London: 227680–685
    [Google Scholar]
  29. Lobigs M., Dalgarno L., Schlesinger J. J., Weir R. C. 1987; Location of a neutralizing determinant in the E protein of yellow fever virus (17D vaccine strain). Virology 161:474–478
    [Google Scholar]
  30. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  31. Mcada P. C., Mason P. W., Schmaljohn C. S., Dalrymple J. M., Mason T. L., Fournier M. J. 1987; Partial nucleotide sequence of the Japanese encephalitis genome. Virology 158:348–360
    [Google Scholar]
  32. Mandl C. W., Heinz F. X., Kunz C. 1988; Sequence of the structural proteins of tick-borne encephalitis virus (western serotype) and comparative analysis with other flaviviruses. Virology 166:197–205
    [Google Scholar]
  33. Mason P. W., Mcada P. C., Dalrymple J. M., Fournier M. J., Mason T. L. 1987a; Expression of Japanese encephalitis virus antigens in Escherichia coli. Virology 158:361–372
    [Google Scholar]
  34. Mason P. W., Mcada P. C., Mason T. L., Fournier M. J. 1987b; Sequence of the dengue-1 virus genome in the region encoding the three structural proteins and the major non-structural protein NS1. Virology 161:262–267
    [Google Scholar]
  35. Nowak T., Wengler G. 1987; Analysis of disulfides present in the membrane proteins of the West Nile flavivirus. Virology 156:127–137
    [Google Scholar]
  36. Rener J. C. 1985; Monoclonal antibody production in ascites fluid. Journal of Tissue Culture Methods 9:187–189
    [Google Scholar]
  37. Repik P. M., Dalrymple J. M., Brandt W. E., Mccown J. M., Russell P. K. 1983; RNA fingerprinting as a method for distinguishing dengue 1 virus strains. American Journal of Tropical Medicine and Hygiene 32:577–589
    [Google Scholar]
  38. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733
    [Google Scholar]
  39. Roehrig J. T. 1986; The use of monoclonal antibodies in studies of the structural proteins of togaviruses and flaviviruses. In The Togaviridae and Flaviviridae251–278 Schlesinger S., Schlesinger M. J. New York and London: Plenum Press;
    [Google Scholar]
  40. Roehrig J. T., Mathews J. H., Trent D. W. 1983; Identification of epitopes on the E glycoprotein of Saint Louis encephalitis virus using monoclonal antibodies. Virology 128:118–126
    [Google Scholar]
  41. Rothman S. W., Gentry M. K., Brown J. E., Foret D. A., Stone M. J., Stickler M. P. 1988; Immunochemical and structural similarities in toxin A and toxin B of Clostridium difficile shown by monoclonal antibodies. Toxicon 26:583–597
    [Google Scholar]
  42. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of SciencesU.S.A 745463–5467
    [Google Scholar]
  43. Sanger F., Coulson A. R., Barrell B. G., Smith A. J. H., Roe B. A. 1980; Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  44. Sartorelli A. C., Fischer D. S., Downs W. G. 1986; Use of sarcoma 180/TG to prepare hyperimmune ascitic fluid in the mouse. Journal of Immunology 96:676–682
    [Google Scholar]
  45. Sumiyoshi H., Morita K., Mori C., Fuke I., Shiba T., Sakaki Y., Igarashi A. 1986; Sequence of 3000 nucleotides at the 5′ end of Japanese encephalitis virus RNA. Gene 48:195–201
    [Google Scholar]
  46. Takegami T., Miyamoto H., Nakamura H., Yasui K. 1982; Biological activities of the structural proteins of Japanese encephalitis virus. Acta virologica 26:312–320
    [Google Scholar]
  47. Tesh R. B. 1979; A method for the isolation and identification of dengue viruses, using mosquito cell cultures. American Journal of Tropical Medicine and Hygiene 28:1053–1059
    [Google Scholar]
  48. Tesh R. B., Duboise S. M. 1987; Viremia and immune response with sequential phlebovirus infections. American Journal of Tropical Medicine and Hygiene 36:662–668
    [Google Scholar]
  49. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of SciencesU.S.A 764350–4354
    [Google Scholar]
  50. Trent D. W., Kinney R. M., Johnson B. J. B., Vorndam A. V., Grant J. A., Deubel V., Rice C. M., Hahn C. 1987; Partial nucleotide sequence of St. Louis encephalitis virus RNA: structural proteins, NS1, ns2a, and ns2b. Virology 156:293–304
    [Google Scholar]
  51. Wengler G., Castle E., Leidner U., Nowak T., Wengler G. 1985; Sequence analysis of the membrane protein V3 of the flavivirus West Nile virus and of its gene. Virology 147:264–274
    [Google Scholar]
  52. Wengler G., Wengler G., Nowak T., Wahn K. 1987; Analysis of the influence of proteolytic cleavage on the structural organization of the surface of the West Nile flavivirus leads to the isolation of a protease-resistant E protein oligomer from the viral surface. Virology 160:210–219
    [Google Scholar]
  53. Winkler G., Heinz F. X., Kunz C. 1987; Characterization of a disulphide bridge-stabilized antigenic domain of tick-borne encephalitis virus structural glycoprotein. Journal of General Virology 68:2239–2244
    [Google Scholar]
  54. Yanisch-perron C., Viera J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119
    [Google Scholar]
  55. Zhao B., Mackow E., Buckler-white A., Markoff L., Chanock R. M., Lai C. -J., Makino Y. 1986; Cloning full-length dengue type 4 viral DNA sequences: analysis of genes coding for structural proteins. Virology 155:77–88
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-8-2037
Loading
/content/journal/jgv/10.1099/0022-1317-70-8-2037
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error