1887

Abstract

SUMMARY

Epstein-Barr virus (EBV) has the capacity to immortalize a subpopulation of resting B lymphocytes. Lymphoblastoid cell lines (LCL) established in this way carry the latent EBV genome as multiple copies of an extrachromasomal episome. Viral gene expression in LCLs is highly restricted; products identified correspond to a membrane protein (latent membrane protein; LMP), a nuclear antigen complex (Epstein-Barr nuclear antigens; EBNAs 1 to 6), two small RNA species (EBERs 1 and 2) and RNA species thought to encode a second membrane-associated polypeptide designated terminal protein (TP). Here we have investigated the temporal sequence of expression of the characterized ‘latent’ proteins during the initiation of immortalization when resting B cells are stimulated to enter and traverse the cell cycle. The analysis has been carried out on prolymphocytic leukaemia cells infected with either the immortalizing B95-8 strain of virus or the non-immortalizing P3HR1 strain. The results reveal that following B95-8 infection, a sequence of EBV expression is initiated within approximately 8 h with the synthesis of detectable levels of EBNA 2 shortly followed by EBNAs 1, 3, 4, 5 and 6. There is then a delay of approximately 40 h until the expression of LMP completes the latent pattern of proteins found in LCLs. P3HR1 infection, however, produces only transient expression of some EBNA species in a small percentage of cells after approximately 48 h. These observations suggest the failure of P3HR1 virus to immortalize may not be due solely to the absence of EBNA 2 expression and that cellular and/or virus-mediated events occur after EBNA synthesis which then facilitate efficient LMP expression and immortalization.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-7-1755
1989-07-01
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/7/JV0700071755.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-7-1755&mimeType=html&fmt=ahah

References

  1. Allday M. J., MacGillivray A. J. 1985; Epstein-Barr virus nuclear antigen (EBNA): size polymorphism of EBNA 1. Journal of General Virology 66:1595–1600
    [Google Scholar]
  2. Allday M. J., Crawford D. H., Griffin B. E. 1988; Prediction and demonstration of a novel Epstein-Barr virus nuclear antigen. Nucleic Acids Research 16:4353–4367
    [Google Scholar]
  3. Dambaugh T., Wang F., Hennessy K., Woodland E., Rickinson A., Kieff E. 1986; Expression of Epstein-Barr virus nuclear protein 2 in rodent cells. Journal of Virology 59:453–462
    [Google Scholar]
  4. Dillner J., Kallin B. 1988; The Epstein-Barr virus proteins. Advances in Cancer Research 50:95–158
    [Google Scholar]
  5. Finke J., Rowe M., Kallin B., Ernberg I., Rosen A., Dillner J., Klein G. 1987; Monoclonal and polyclonal antibodies against Epstein-Barr virus nuclear antigen 5 (EBNA 5) detect multiple protein species in Burkitt's lymphoma and lymphoblastoid cell lines. Journal of Virology 61:3870–3878
    [Google Scholar]
  6. Gordon J., Guy G. R. 1987; The molecules controlling B-lymphocytes. Immunology Today 8:339–343
    [Google Scholar]
  7. Gordon I., Walker L., Guy G., Brown G., Rowe M., Rickinson A. 1986; Control of human B-lymphocyte replication. II. Transforming Epstein-Barr virus exploits three distinct viral signals to undermine three separate control points in B-cell growth. Immunology 58:591–595
    [Google Scholar]
  8. Hinuma Y., Konn M., Yamaguchi J., Wudarski D. J., Blakeslee J. R., Grace J. T. 1967; Immunofluorescence and herpes-type virus particles in the P3HR1 Burkitt lymphoma cell line. Journal of Virology 1:1045–1051
    [Google Scholar]
  9. Hurley E. A., Thorley-Lawson D. A. 1988; B cell activation and the establishment of Epstein-Barr virus latency. Journal of Experimental Medicine 168:2059–2075
    [Google Scholar]
  10. Kallin B., Dillner J., Ernberg I., Ehlin-henriksson B., Rosen A., Henle W., Klein G. 1986; Four virally determined nuclear antigens are expressed in Epstein-Barr virus-transformed cells. Proceedings of the National Academy of SciencesU.S.A 83:1499–1503
    [Google Scholar]
  11. King W., Thomas-Powell A. L., Raab-Traub N., Hawke M., Kieff E. 1980; Viral RNA in a restringently infected, growth transformed cell line. Journal of Virology 36:506–518
    [Google Scholar]
  12. Klein G., Svedmyr E., Jondal M., Presson P. O. 1976; EBV-determined nuclear antigen (EBNA)-positive cells in the peripheral blood of infectious mononucleosis patients. International Journal of Cancer 17:21–26
    [Google Scholar]
  13. Klein G., Giovanella B., Westman A., Stehlin J. S., Mumford D. 1975; An EBV-genome negative cell line established from an American Burkitt lymphoma; receptor characteristics, EBV-infectibility and permanent conversion into EBV positive sublines by in vitro infection. Intervirology 5:319–334
    [Google Scholar]
  14. Laux G., Pbrricaudet M., Farrell P. J. 1988; A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear genome. EMBO Journal 7:769–774
    [Google Scholar]
  15. Lerner M. R., Andrews N. C., Miller G., Steitz J. A. 1981; Two small RNAs encoded by Epstein–Barr virus and complexed with protein are precipitated by antibodies from patients with systemic lupus erythematosus. Proceedings of the National Academy of SciencesU.S.A 78:805–809
    [Google Scholar]
  16. Lindahl T., Adams A., Bjursell G., Bornkamm G., Kaschka-Dierich C, Jehn U. 1976; Covalently closed circular duplex DNA of EBV in a human lymphoid cell line. Journal of Molecular Biology 102:511–530
    [Google Scholar]
  17. Mann K. P., Staunton D., Thorley-Lawson D. A. 1985; Epstein-Barr virus-encoded protein found in plasma membranes of transformed cells. Journal of Virology 55:710–720
    [Google Scholar]
  18. Melchers F., Lernhardt W. 1985; Three restriction points in the cell cycle of activated murine B lymphocytes. Proceedings of the National Academy of SciencesU.S.A 83:805–809
    [Google Scholar]
  19. Melo J. V., Brito-Babapalle V., Foroni L., Robinson D. S. F., Luzatto L., Catovsky D. 1986; Two new cell lines from B-prolymphocytic leukaemia: characterization by morphology, immunological markers, karyotype and Ig gene rearrangement. International Journal of Cancer 38:531–538
    [Google Scholar]
  20. Miller G., Shope T., Lisco H., Stitt D., Lipman M. 1982; Epstein-Barr virus: transformation, cytopathic changes and viral antigens in squirrel monkey and marmoset leucocytes. Proceedings of the National Academy of SciencesU.S.A 69:385–387
    [Google Scholar]
  21. Miller G., Robinson J., Heston L., Lipman M. 1974; Differences between laboratory strains of Epstein–Barr virus based on immortalization, abortive infection and interference. Proceedings of the National Academy of SciencesU.S.A 71:4006–4010
    [Google Scholar]
  22. Moss D. J., Sculley T. B., Pope J. H. 1986; Induction of Epstein-Barr virus nuclear antigens. Journal of Virology 58:988–990
    [Google Scholar]
  23. Murray R. J., Wang D., Young L. S., Wang F., Rowe M., Kieff E., Rickinson A. B. 1988a; Epstein-Barr virus-specific cytotoxic T-cell recognition of transfectants expressing the virus-coded latent membrane protein LMP. Journal of Virology 62:3747–3755
    [Google Scholar]
  24. Murray R. J., Young L. S., Calender A., Gregory C. D., Rowe M., Lenoir G. M., Rickinson A. B. 1988b; Different patterns of Epstein-Barr virus gene expression and of cytotoxic T-cell recognition in B-cell lines infected with transforming (B95-8) or non-transforming (P3HR1)virus strains. Journal of Virology 62:894–901
    [Google Scholar]
  25. Nemerow G. R., Siaw M. F. G., Cooper N. R. 1986; Purification of the Epstein-Barr virus/C3d complement receptor of human B-lymphocytes: antigenic and functional properties of the purified protein. Journal of Virology 58:709–712
    [Google Scholar]
  26. Pattengale P. K., Smith R. W., Gerber P. 1973; Selective transformation of B lymphocytes by EB virus. Lancet ii:93–94
    [Google Scholar]
  27. Rabson M., Gradoville L., Heston L., Miller G. 1982; Non-immortalizing P3J-HR-1 Epstein-Barr virus: a deletion mutant of its transforming parent, Jijoye. Journal of Virology 44:834–844
    [Google Scholar]
  28. Reedman B. M., Klein G. 1973; Cellular localization of an Epstein-Barr virus (EBV)-associated complement-fixing antigen in producer and non-producer lymphoblastoid cell lines. International Journal of Cancer 11:499–520
    [Google Scholar]
  29. Rowe M., Evans H. S., Young L. S., Hennessy K., Kieff E., Rickinson A. B. 1987; Monoclonal antibodies to the latent membrane protein Epstein-Barr virus reveal heterogeneity of the protein and inducible expression in virus-transformed cells. Journal of General Virology 68:1575–1586
    [Google Scholar]
  30. Swendeman S., Thorley-Lawson D. A. 1987; The activation antigen Blast-2, when shed is an autocrine BCGF for normal and transformed B-cells. EMBO Journal 6:1637–1642
    [Google Scholar]
  31. Teo C. G., Griffin B. E. 1987; Epstein-Barr virus genomes in lymphoid cells: activation in mitosis and chromosomal location. Proceedings of the National Academy of SciencesU.S.A 84:8473–8477
    [Google Scholar]
  32. Thorley-Lawson D. 1988; Basic virological aspects of Epstein-Barr virus infection. Seminars in Hematology 25:247–260
    [Google Scholar]
  33. Thorley-Lawson D. A., Nadler L. M., Bahn A. K., Schooley R. T. 1985; Blast 2 (EBVCS), an early cell surface marker of human B cell activation is superinduced by EBV. Journal of Immunology 134:3007–3012
    [Google Scholar]
  34. Tosato G., Blaese R. M. 1985; Epstein-Barr virus infection and immunoregulation in man. Advances in Immunology 37:99–149
    [Google Scholar]
  35. Walls E. V., Doyle M. G., Patel K. K., Allday M. J., Catovsky D., Crawford D. H. 1989; Activation and immortalization of leukemic B cells by Epstein-Barr virus. International Journal of Cancer (in press)
    [Google Scholar]
  36. Wang D., Liebowitz D., Kieff E. 1985; An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840
    [Google Scholar]
  37. Wang F., Gregory C. D., Rowe M., Rickinson A. B., Wang D., Birkenbach M., Kukutani H., Kishimoto T., Kieff E. 1987; Epstein-Barr virus nuclear antigen 2 specifically induces expression of B cell activation antigen CD23. Proceedings of the National Academy of SciencesU.S.A 84:3452–3456
    [Google Scholar]
  38. Yates J. L., Warren N., Sugden B. 1985; Stable replication of plasmids derived from Epstein-Barr virus in mammalian cells. Nature London: 313812–815
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-70-7-1755
Loading
/content/journal/jgv/10.1099/0022-1317-70-7-1755
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error