1887

Abstract

SUMMARY

Twenty-nine hybridoma cell lines, producing monoclonal antibodies (MAbs) to the Minnesota strain of turkey enteric coronavirus (TCV), have been established by fusion of Sp2/0 myeloma cells with spleen cells from BALB/c mice immunized with purified preparations of the egg-adapted or tissue culture-adapted virus. The hybridomas produced mainly IgG2a or IgG1 antibodies. Western immunoblotting experiments with purified virus, and immunoprecipitation tests with [S]methionine-labelled infected cell extracts, allowed assessment of the polypeptide specificity of the MAbs. Sixteen hybridomas secreted antibodies directed to the peplomeric protein (E2, gp200/gp100) and putative intracellular precursors of apparent 170K to 180K and 90K. Four hybridomas produced antibodies that selectively reacted with a glycoprotein with an of 140K (E3). This polypeptide species corresponded to the major structural component of small granular projections, located near the base of the larger bulbous peplomers, and was found to be responsible for haemagglutination. The major neutralization-mediating determinants were found to be carried by both E2 and E3 glycoproteins. Eight hybridomas produced MAbs directed to the major nucleocapsid protein (N, 52K), and only one MAb reacted with a low structural glycoprotein (24K), corresponding to the matrix (El) protein. By indirect immunofluorescence, MAbs of different specificity also revealed distinct patterns of distribution of the viral antigens within the cells. The location on the virion of the antigenic determinants recognized by MAbs of different specificity was determined by the use of an immunogold electron microscopy technique. Comparison of nine TCV Quebec strains, using MAbs directed to peplomer and haemagglutinin proteins of the prototype Minnesota strain, confirmed their close antigenic relationship, but also revealed the occurrence of at least two distinct antigenic groups.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-7-1725
1989-07-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/7/JV0700071725.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-7-1725&mimeType=html&fmt=ahah

References

  1. Alain R., Nadon F., Seguin C., Payment P., Trudel M. 1987; Rapid virus subunit visualization by direct sedimentation of samples on electron microscopic grids. Journal of Virological Methods 16:209–216
    [Google Scholar]
  2. Bingham R. W., Almeida J. D. 1977; Studies on the structure of a coronavirus-avian infectious bronchitis virus. Journal of General Virology 36:495–502
    [Google Scholar]
  3. Boursnell M. E. G., Binns M. M., Foulds I. J., Brown T. D. K. 1985; Sequences of the nucleocapsid genes from two strains of avian infectious bronchitis virus. Journal of General Virology 66:573–580
    [Google Scholar]
  4. Bradford M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  5. Buchmeier M. J., Lewicki H. A., Talbot P. J., Knobler R. L. 1984; Murine hepatitis virus-4 (strain JHM) induced neurologic disease is modulated in vivo by monoclonal antibody. Virology 132:261–270
    [Google Scholar]
  6. Cavanagh D., Davis P. J., Darbyshire J. H., Peters R. W. 1986a; Coronavirus IBV: virus retaining spike glycopeptide S2 but not S1 is unable to induce virus-neutralizing or haemagglutination-inhibiting antibody, or induce chicken tracheal protection. Journal of General Virology 67:1435–1442
    [Google Scholar]
  7. Cavanagh D., Davis P. J., Pappin D. J. C., Binns M. M., Boursnell M. E. G., Brown T. D. K. 1986b; Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg- Arg at the cleavage site of the spike precursor propolypeptide of IBV strains Beaudette and M41. Virus Research 4:133–143
    [Google Scholar]
  8. Collins A. R., Knobler R. L., Powell H., Buchmbier M. J. 1982; Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein responsible for attachment and cell—cell fusion. Virology 119:358–371
    [Google Scholar]
  9. Dea S., Tijssen P. 1988a; Viral agents associated with outbreaks of diarrhea in turkey flocks in Quebec. Canadian Journal of Veterinary Research 52:53–57
    [Google Scholar]
  10. Dea S., Tijssen P. 1988b; Identification of the structural proteins of turkey enteric coronavirus. Archives of Virology 99:173–186
    [Google Scholar]
  11. Dea S., Roy R. S., Begin M. E. 1979; Counterimmunoelectroosmophoresis for detection of neonatal calf diarrhea coronavirus methodology and comparison with electron microscopy. Journal of Clinical Microbiology 10:240–244
    [Google Scholar]
  12. Dea S., Marsolais G., Beaubien J., Ruppanner R. 1986; Coronaviruses associated with outbreaks of transmissible enteritis of turkeys in Quebec: hemagglutination properties and cell cultivation. Avian Diseases 30:319–326
    [Google Scholar]
  13. Dea S., Garzon S., Tijssen P. 1989; Isolation and trypsin-enhanced propagation of turkey enteric (bluecomb) coronaviruses in a continuous human rectal tumor cell line. American Journal of Veterinary Research in press
    [Google Scholar]
  14. Delmas B., Gelfi J., Laude H. 1986; Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. Journal of General Virology 67:1405–1418
    [Google Scholar]
  15. De Mey J. 1983; Colloidal gold probes in immunocytochemistry. In Immunocytochemistry. Applications in Pathology and Biology82–113 Polack J., Van Noorden S. London: J. Wright & Sons Ltd;
    [Google Scholar]
  16. Deregt D., Babiuk L. A. 1987; Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology 161:410–420
    [Google Scholar]
  17. Deregt D., Sabara M., Babiuk L. A. 1987; Structural proteins of bovine coronavirus and their intracellular processing. Journal of General Virology 68:2863–2877
    [Google Scholar]
  18. Deshmukh D. R., Larsen C. T., Pomeroy B. S. 1973; Survival of bluecomb agent in embryonating turkey eggs and cell cultures. American Journal of Veterinary Research 34:673–675
    [Google Scholar]
  19. Deshmukh D. R., Sautter J. H., Patel B. L., Pomeroy S. 1974; Histopathology of fasting and bluecomb disease in turkey poults and embryos experimentally infected with bluecomb disease coronavirus. Asian Diseases 20:631–640
    [Google Scholar]
  20. Fazekas De St Groth S., Scheideggbr D. 1980; Production of monoclonal antibodies: strategy and tactics. Journal of Immunological Methods 35:1–21
    [Google Scholar]
  21. Fleming J. O., Stohlman S. A., Harmon R. C., Lai M. M. C., Frelinger J. A., Weiner L. P. 1983; Antigenic relationship of murine coronaviruses: analysis using monoclonal antibodies to JHM (MHV-4) virus. Virology 131:296–307
    [Google Scholar]
  22. Frankel M. E., Gerhard W. 1979; The rapid determination of binding constants for antiviral antibodies by a radioimmunoassay. An analysis of the interaction between hybridoma proteins and influenza virus. Molecular Immunology 16:101–106
    [Google Scholar]
  23. Frens G. 1973; Controlled nucleation for the regulation of the particle size in monodisperse gold solutions. Nature Physical Science 241:20–22
    [Google Scholar]
  24. Garzon S., Bendayan M., Kurstak E. 1982; Ultra-structural localization of viral antigens using the protein A–gold technique. Journal of Virological Methods 5:67–73
    [Google Scholar]
  25. Hogufe B. G., Brian D. 1986; Structural proteins of human respiratory coronavirus OC43. Virus Research 5:131–144
    [Google Scholar]
  26. Hogue B. G., King B., Brian D. A. 1984; Antigenic relationships among proteins of bovine coronavirus, human respiratory coronavirus OC43, and mouse hepatitis coronavirus A59. Journal of Virology 51:384–388
    [Google Scholar]
  27. Jimènez G., Correa I., Melgosa M. P., Bullido M. J., Enjuxnes L. 1986; Critical epitopes in transmissible gastroenteritis virus neutralization. Journal of Virology 60:131–139
    [Google Scholar]
  28. King B., Potts B. J., Brian D. A. 1985; Bovine coronavirus hemagglutinin protein. Virus Research 2:53–59
    [Google Scholar]
  29. Lapps W., Hogue B. G., Brian D. A. 1987; Sequence analysis of the bovine coronavirus nucleocapsid and matrix protein genes. Virology 157:47–57
    [Google Scholar]
  30. Laude H., Chapsal I. M., Grlpi J., Labiau S., Grosclaude J. 1986; Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. Journal of General Virology 67:119–130
    [Google Scholar]
  31. Morrimey J. H. 1981; Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Analytical Biochemistry 117:307–310
    [Google Scholar]
  32. Niesters H. G. M., Bleumink-Pluym N. M. C., Osterhaus A. D. M. E., Horzinek M. C., Van Der Zeijst B. A. M. 1987; Epitopes on the peplomer protein of infectious bronchitis virus strain M14 as defined by monoclonal antibodies. Virology 161:511–519
    [Google Scholar]
  33. Panigrahy B., Naqi S. A., Hall C. F. 1973; Isolation and characterization of viruses associated with transmissible enteritis (bluecomb) of turkeys. Auian Diseases 17:436–438
    [Google Scholar]
  34. Patel B. L., Gonder E., Pomeroy B. S. 1977; Detection of turkey coronaviral enteritis (bluecomb) in field epiornithics, using the direct and indirect fluorescent antibody tests. American Journal of Veterinary Research 38:1407–1411
    [Google Scholar]
  35. Pomery B. S. 1984; The coronaviral enteritis of turkeys. In Diseases of Poultry, 8.553–559 Hofstad M. S., Barnes H. J., Calnek B. W., Reid W. M., Yoder H. W. Annes: Iowa State University Press;
    [Google Scholar]
  36. Pomeroy B. S., Larsen C. T., Deshmukh D. R., Patel B. L. 1975; Immunity to transmissible (coronaviral) enteritis of turkeys (bluecomb). American Journal of Veterinary Research 367:553–555
    [Google Scholar]
  37. Pomeroy K. A., Patbl B. L., Larsen G. T., Pomeroy B. S. 1978; Combined immunofluorescence and transmission electron microscopic studies of sequential intestinal samples from turkey embryos and poults infected with turkey enteritis virus. American Journal of Veterinary Research 39:1348–1354
    [Google Scholar]
  38. Ritchie A. E., Deshmukh D. R., Larsen C. T., Pomeroy B. S. 1973; Electron microscopy of coronavirus-like particles characteristic of turkey bluecomb disease. Auian Diseases 17:546–558
    [Google Scholar]
  39. Robbins S. G., Franc M. F., McGan J. I., Boyle J. F., Holmes K. V. 1986; RNA-binding proteins of coronavirus MHV: detection of monomeric and multimeric N protein with an RNA overlay-protein blot assay. Virology 150:402–410
    [Google Scholar]
  40. Rottier P. J. M., Horzinek M. C., Van Der Zeijst B. A. U. 1981; Viral protein synthesis in mouse hepatitis virus strain A59 infected cells: effect of tunicamycin. Journal of Virology 40350–357
    [Google Scholar]
  41. Shulman M., Wilde C. D., Köhler G. 1978; A better cell line for making hybridomas secreting specific antibodies. Nature London: 276:269–270
    [Google Scholar]
  42. Siddell S., Wage H., Barthel A., Ter Meulen V. 1981; Coronavirus JHM : intracellular protein synthesis. Journal of General Virology 53:145–155
    [Google Scholar]
  43. Siddell S., Wege H., Ter Meulen V. 1983; The biology of coronaviruses. Journal of General Virology 64:761–776
    [Google Scholar]
  44. Skinner U. X., Siddell S. G. 1983; Coronavirus JHM: nucleotide sequence of the mRNA that encodes nucleocapsid protein. Nucleic Acids Research 11:5045–5054
    [Google Scholar]
  45. Stern D. F., Burgess L., Sefton B. M. 1982; Structural analysis of virion proteins of the avian coronavirus infectious bronchitis virus. Journal of Virology 42:208–219
    [Google Scholar]
  46. Sturman L. S., Holmes K. V. 1983; The molecular biology of coronaviruses. Advances in Virus Research 28:35–112
    [Google Scholar]
  47. Sturman L. S., Ricard C. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of Virology 56:904–911
    [Google Scholar]
  48. Sugiyama K., Ishikawa R., Fukuhara N. 1986; Structural polypeptides of the murine coronavirus DVIM. Archives of Virology 89:245–254
    [Google Scholar]
  49. Talbot P. J., Buchmeier M. I. 1985; Antigenic variation among murine coronaviruses: evidence for polymorphism on the peplomer glycoprotein E2.. Virus Research 2:317–328
    [Google Scholar]
  50. Tijssen P. 1985; Practice and theory of enzyme immunoassays. Amsterdam; Elsevier:
    [Google Scholar]
  51. Tompkins W. A. F., Watrach A. W., Schmale J. D., Schultz R. M., Harris J. A. 1974; Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum. Journal of the National Cancer Institute 52:101–106
    [Google Scholar]
  52. Wege H., Dörries R., Wege H. 1984; Hybridoma antibodies to the murine coronavirus JHM: characterization of epitopes on the peplomer protein (E2). Journal of General Virology 65:1931–1942
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-7-1725
Loading
/content/journal/jgv/10.1099/0022-1317-70-7-1725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error