1887

Abstract

SUMMARY

Immunization of mice with vaccinia virus recombinants expressing the glycoproteins B or D of herpes simplex virus type 1 (HSV-1) induced humoral antibody as well as multiple aspects of HSV-1-specific T lymphocyte-mediated responses. However, vaccinated mice were not completely resistant to HSV-1 challenge and were unable to eliminate an epithelial infection rapidly. Evidence is presented which indicates that immunization with either vaccinia virus recombinant, while inducing the necessary protective populations of CD4 T lymphocytes, fails to induce the complementing CD8 cytotoxic T lymphocytes necessary for high levels of protection against a primary HSV-1 infection. These findings are discussed with relevance to the future development of anti-HSV vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-6-1359
1989-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/6/JV0700061359.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-6-1359&mimeType=html&fmt=ahah

References

  1. Berman P. W., Gregory T., Crase D., Lasky L. A. 1985; Protection from genital herpes simplex virus type 2 infection by vaccination with cloned type 1 glycoprotein D.. Science 227:1490–1492
    [Google Scholar]
  2. Blacklaws B. A., Nash A. A., Darby G. 1987; Specificity of the immune response of mice to herpes simplex virus glycoproteins B and D constitutively expressed on L cell lines.. Journal of General Virology 68:1103–1114
    [Google Scholar]
  3. Bzik D. J., Fox B. A., Deluca N. A., Person S. 1984; Nucleotide sequence specifying the glycoprotein gene gB of herpes simplex virus type 1.. Virology 133:301–314
    [Google Scholar]
  4. Cal W., Gu B., Person S. 1988; Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion.. Journal of Virology 62:2596–2604
    [Google Scholar]
  5. Cantin E. M., Eberlf R., Baldick J. L., Moss B., Willey D. E., Notkins A. L., Openshaw H. 1987; Expression of herpes simplex virus (HSV-1) glycoprotein B by a recombinant vaccinia virus and protection of mice against lethal HSV-1 infection.. Proceedings of the National Academy of Sciences, U.S.A. 84:5908–5912
    [Google Scholar]
  6. Chan W. L., Lukig M. L., Liew F. Y. 1985; Helper T cells induced by an immunopurified herpes simplex virus type 1 (HSV-1) 115 kilodalton glycoprotein (gB) protect mice against HSV-1 infection.. Journal of Experimental Medicine 162:1304–1318
    [Google Scholar]
  7. Cremer K. J., Mackett M., Wohlenberg C., Notkins A. L., Moss B. 1985; Vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D prevents latent herpes in mice.. Science 228:737–740
    [Google Scholar]
  8. Friedman H. M., Cohen G. H., Eisenberg R. J., Ssidel C. A., Cines D. B. 1984; Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells.. Nature, London 309:633–635
    [Google Scholar]
  9. Gompels V., Minson A. 1986; The properties and sequence of glycoprotein H of herpes simplex virus type 1.. Virology 153:230–247
    [Google Scholar]
  10. Hill T. J., Field H. J., Blyth W. A. 1975; Acute and recurrent infection with herpes simplex virus in the mouse. A model for studying latency and recurrent disease.. Journal of General Virology 28:341–353
    [Google Scholar]
  11. Johnson D. C., Frame M. C., Ligas M. W., Cross A. M., Stow N. D. 1988; Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins gE and gI.. Journal of Virology 62:1347–1354
    [Google Scholar]
  12. Jonjic S., Del Val M., Kbil G. M., Reddehase M. J., Koszinowski V. H. 1988; A nonstructural viral protein expressed by recombinant vaccinia virus protects against lethal cytomegalovirus infection.. Journal of Virology 62:1653–1658
    [Google Scholar]
  13. Lawman M. J., Rouse B. T., Courtney R. J., Walker R. D. 1980; Cell-mediated immunity against herpes simplex induction of cytotoxic T lymphocytes.. Infection and immunity 27:133–139
    [Google Scholar]
  14. Ligas M. W., Johnson D. C. 1988; A herpes simplex virus mutant in which gD sequences are replaced by β-galactosidase sequences binds but is unable to penetrate into cells.. Journal of Virology 62:1486–1494
    [Google Scholar]
  15. McLaughlin-Taylor E., Willey D. E., Cantin E. M., Eberlb R., Moss B., Openshaw H. 1988; A recombinant vaccinia virus expressing herpes simplex virus type 1 glycoprotein B induces cytotoxic T lymphocytes in mice.. Journal of General Virology 69:1731–1734
    [Google Scholar]
  16. Martin S., Rouse B. T. 1987; The mechanisms of antiviral immunity induced by a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: viral clearance.. Journal of Immunology 138:3431–3437
    [Google Scholar]
  17. Martin S., Moss B., Berman P. W., Lasky L. A., Rouse B. T. 1987; The mechanisms of antiviral immunity induced by a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: cytotoxic T cells.. Journal of Virology 61:726–734
    [Google Scholar]
  18. Martin S., Courtney R. J., Fowler G., Rouse B. T. 1988; Herpes simplex virus type 1-specific cytotoxic T lymphocytes recognise virus nonstructural proteins.. Journal of Virology 62:2265–2273
    [Google Scholar]
  19. Meignier B., Jourdier T. M., Norrild B., Pereira L., Roizman B. 1987; Immunization of experimental animals with reconstituted glycoprotein mixtures of herpes simplex virus 1 and 2: protection against challenge with virulent virus.. Journal of Infectious Diseases 155:921–930
    [Google Scholar]
  20. Pellett P. E., Kousoulas K. G., Pereira L., Roizman B. 1985; Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal antibody-resistant mutants.. Journal of Virology 53:243–253
    [Google Scholar]
  21. Pfizenmaier K., Starzinski-Powitz A., Rollinghoff M., Wagner H. 1977; T cell mediated cytotoxicity against herpes simplex virus-infected target cells.. Nature, London 265:630–32
    [Google Scholar]
  22. Ppizenmaier K., Jung H., Kurle R., Rollinghoff M., Wagner H. 1980; Anti-H-2Dd alloreactivity mediated by herpes simplex virus-specific cytotoxic T lymphocytes is associated with H-2Dk . Immunogenetics 10:395–402
    [Google Scholar]
  23. Rouse B. T., Larsen H. S., Wagner H. 1983; Frequency of cytotoxic T lymphocyte precursors to herpes simplex virus type 1 as determined by limiting dilution analysis.. Infection and Immunity 39:785–792
    [Google Scholar]
  24. Schrier R. D., Pizer L. I., Moorehead J. W. 1983; Type-specific delayed hypersensitivity and protective immunity induced by isolated herpes simplex virus glycoprotein.. Journal of Immunology 130:1413–1418
    [Google Scholar]
  25. Spear P. G. 1985; Glycoproteins specified by herpes simplex viruses.. In The Herpesviruses 3315–356 Roizman B. New York & London: Plenum Press;
    [Google Scholar]
  26. Stanberry L. R., Bernstein D. I., Burke R. L., Pachl C., Myers M. G. 1987; Vaccination with recombinant herpes simplex virus glycoproteins: protection against initial and recurrent genital herpes.. Journal of Infectious Diseases 155:914–920
    [Google Scholar]
  27. Sullivan V., Smith G. L. 1987; Expression and characterization of herpes simplex virus type 1 (HSV-1) glycoprotein G (gG) by recombinant vaccinia virus: neutralization of HSV-1 infectivity with anti-gG antibody.. Journal of General Virology 68:2587–2598
    [Google Scholar]
  28. Sullivan V., Smith G. L. 1988; The herpes simplex virus type 1 US7 gene product is a 66K glycoprotein and is a target for complement-dependent virus neutralization.. Journal of General Virology 69:859–867
    [Google Scholar]
  29. Taswell C. 1981; Limiting dilution assays for the determination of immunocompetent cell frequencies. 1. Data analysis.. Journal of Immunology 126:1614–1619
    [Google Scholar]
  30. Von Boehmer H., Hengartner H., Nabholz M., Lenhardt W., Schreis M. 1979; Fine specificity of a continuously growing killer cell clone specific for H-Y antigen.. European Journal of Immunology 9:592–597
    [Google Scholar]
  31. Wade D. B., Marrack P., Kappler J., Dialynas D. P., Fitch F. W. 1983; Evidence implicating L3T4 in class II MHC antigen reactivity: monoclonal antibody GK1-5 (anti-L3T4a) blocks class II MHC antigen-specific proliferation. Release of lymphokines, and binding by cloned murine helper T lymphocyte lines.. Journal of Immunology 131:2178–2183
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-6-1359
Loading
/content/journal/jgv/10.1099/0022-1317-70-6-1359
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error