Herpes Simplex Virus Causes Amplification of Recombinant Plasmids Containing Simian Virus 40 Sequences Free

Abstract

SUMMARY

Simian virus 40 (SV40) DNA, inserted into a plasmid vector, does not replicate when transfected into baby hamster kidney cells. However, when the recipient cells are superinfected with herpes simplex virus type 1 (HSV-1), extensive amplification of the introduced plasmid occurs. Deletion of the late SV40 region or part of the coding sequences of the small tumour (t) antigen has no effect on the efficiency of amplification, whereas manipulations affecting either the SV40 origin of replication or the integrity of large tumour (T) antigen substantially decrease HSV-induced amplification. Phosphonoacetic acid, an inhibitor of HSV DNA polymerase, strongly inhibits plasmid replication. Also, an HSV-1 mutant with a temperature-sensitive defect in the DNA polymerase gene (H) is unable to carry out amplification of test plasmids at the non-permissive temperature. On the other hand, a further mutant (S) causes SV40–plasmid amplification independent of the temperature, but this mutant fails to amplify a plasmid with an HSV origin at the non-permissive temperature. Thus, HSV-induced amplification of heterologous DNA is possible in the absence of HSV DNA replication. Since S putatively has a defect in the gene coding for an HSV origin-binding protein (UL9), this observation appears plausible. The implications for interaction between herpesviral replication functions and heterologous (possibly cellular) DNA sequences are discussed.

Keyword(s): amplification , HSV and SV40
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-6-1347
1989-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/6/JV0700061347.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-6-1347&mimeType=html&fmt=ahah

References

  1. Becker Y., Asher Y., Weinberg-Zahlering E., Rabkin S., Friedman A., Kessler E. 1978; Defective herpes simplex virus DNA : circular and circular-linear molecules resembling rolling circles. Journal of General Virology 40:318–335
    [Google Scholar]
  2. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1522
    [Google Scholar]
  3. Bkwal N., Sharma S., Khan N. C., Cabral G. A., Patterson M. 1978; Amplification of two endo R-HindIII- restricted fragments of the DNA of herpes simplex virus type 1. Virology 85:568–586
    [Google Scholar]
  4. Brandner G., Burger A., Neumann-Haefelin D., Relnke C., Helwig H. 1977; Isolation of simian virus 40 from a newborn child. Journal of Clinical Microbiology 5:250–252
    [Google Scholar]
  5. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  6. Challberg M. D. 1986; A method for identifying the viral genes required for herpesvirus DNA replication. Proceedings of the National Academy of Sciences, U.S.A 83:9094–9098
    [Google Scholar]
  7. Chen E. Y., Seeburg P. H. 1985; SupercoiI sequencing : a fast and simple method for sequencing plasmid DNA. DNA 4:165–170
    [Google Scholar]
  8. Chenet-Monte C., Mohammad F., Celluzzi C. M., Schaffer P. A., Farber F. E. 1986/87; Herpes simplex virus gene products involved in the induction of chromosomal aberrations. Virus Research 6:245–260
    [Google Scholar]
  9. Danovicch R. M., Frenkel N. 1988; Herpes simplex virus induces the replication of foreign DNA. Molecular and Cellular Biology 8:3272–3281
    [Google Scholar]
  10. Eliaas P., O’donnell M. E., Mocarski E. S., Lehman I. R. 1986; A DNA binding protein specific for an origin of replication of herpes simplex virus type 1. Proceedings of the National Academy of Sciences, U.S.A 83:6322–6326
    [Google Scholar]
  11. Fenwick M. L., Walker M. J. 1978; Suppression of the synthesis of cellular macromolecules by herpes simplex virus. Journal of General Virology 41:37–51
    [Google Scholar]
  12. Frenkel N. 1981; Defective interfering herpesviruses. In The Human Herpesviruses91–120 Nahmias A. J., Dowdle W. R., Schinazi R. F. Amsterdam: Elsevier;
    [Google Scholar]
  13. Galloway D. A., McDougall J. K. 1983; The oncogenic potential of herpes simplex viruses : evidence for a ‘hit- and-run’ mechanism. Nature, London 302:21–24
    [Google Scholar]
  14. Gerspach R., Matz B. 1988; Herpes simplex virus-directed overreplication of chromosomal DNA physically linked to the simian virus 40 integration site of a transformed hamster cell line. Virology 165:282–285
    [Google Scholar]
  15. Graham F. L., Vandereb A. J. 1973; A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467
    [Google Scholar]
  16. Gray C. P., Kaerner H. C. 1984; Sequence of the putative origin of replication in the UL region ofherpes simplex virus type 1 ANG DNA. Journal of General Virology 65:2109–2119
    [Google Scholar]
  17. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. Journal of Molecular Biology 166:557–580
    [Google Scholar]
  18. Leary K., Francke B. 1984; The interaction of a topoisomerase-like enzyme from herpes simplex virus type l-infected cells with non-viral circular DNA. Journal of General Virology 65:1341–1350
    [Google Scholar]
  19. Lockshon D., Galloway D. A. 1986; Cloning and characterization of oriL2, a large palindromic DNA replication origin of herpes simplex virus type 2. Journal of Virology 58:513–521
    [Google Scholar]
  20. Macfarlane D. E., Sommerville R. G. 1969; VERO cells (Cercopithecus aethiops kidney) - growth characteristics and viral susceptibility for use in diagnostic virology. Archiv fur die Gesamte Virusforschung 27:379–385
    [Google Scholar]
  21. Mcgch D. J., Dalrymple M. A., Dolan A., Mcnab D., Perry L. J., Taylor P., Challberg M. D. 1988; Structures of herpes simplex virus type 1 genes required for replication of virus DNA. Journal of Virology 62:444–453
    [Google Scholar]
  22. Macnab J. C. M. 1987; Herpes simplex virus and human cytomegalovirus: their role in morphological transformation and genital cancers. Journal of General Virology 68:2525–2550
    [Google Scholar]
  23. Macpherson I., Stoker M. 1962; Polyoma transformation of hamster cell clones - an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  24. Marsden H. S., Crombie L K., Subak-SHARPE J. H. 1976; Control of protein synthesis in herpesvirus-infected cells : analysis of the polypeptides induced by wild type and sixteen temperature-sensitive mutants of HSV strain 17. Journal of General Virology 31:347–372
    [Google Scholar]
  25. Matz B. 1987; Herpes simplex virus infection generates large tandemly reiterated simian virus 40 DNA molecules in a transformed hamster cell line. Journal of Virology 61:1427–1434
    [Google Scholar]
  26. Matz B., Subak-Sharpe J. H., Preston V. G. 1983; Physical mapping of temperature-sensitive mutations of herpes simplex virus type 1 using cloned restriction endonuclease fragments. Journal of General Virology 64:2261–2270
    [Google Scholar]
  27. Matz B., Schlehofer J. R., Zur Hausen H. 1984; Identification of a gene function of herpes simplex virus type 1 essential for amplification of simian virus 40 DNA sequences in transformed hamster cells. Virology 134:328–337
    [Google Scholar]
  28. Matz B., Schlehofer J. R., Zur Hausen H., Huber B., Fanning E. 1985; HSV- and chemical carcinogen- induced amplification of SV40 DNA sequences in transformed cells is cell line-dependent. Jntemational Journal of Cancer 35:521–525
    [Google Scholar]
  29. Myers R. M., Tjian R. 1980; Construction and analysis of simian virus 40 origins defective in tumor antigen binding and DNA replication. Proceedings of the National Academy of Sciences, U.S.A 77:6491–6495
    [Google Scholar]
  30. Nachtlgal M., Duff R., Rapp F. 1975; Chromosome aberrations in Syrian hamster embryo cells transformed after exposure to uv-irradiated herpes simplex type 1 and 2. Joumalof the National Cancer Institute 54:92–105
    [Google Scholar]
  31. Olivo P. D., Nelson N. J., Challberg M. D. 1988; Herpes simplex virus DNA replication: the UL9 gene encodes an origin-binding protein. Proceedings of the National Academy of Sciences, U.S.A 85:5414–5418
    [Google Scholar]
  32. Pratt N. R., Lowther G. W., Rees R. C., Teale D. M., Potter C. W. 1984; Non-random chromosome changes in a herpesvirus-transformed Syrian hamster cell line and its metastatic derivatives. International Journal of Cancer 34:849–853
    [Google Scholar]
  33. Preston V. G., Davison A. J., Marsden H. S., Timbury M. C., Subak-Sharpe J. H., Wilkie N. M. 1978; Recombinants between herpes simplex virus types 1 and 2: analyses of genome structures and expression of immediate-early polypeptides. Journal of Virology 28:499–517
    [Google Scholar]
  34. Rao B. S., Martin R. G. 1988; DpnI assay for DNA replication in animal cells : enzyme-resistant material can result from factors not related to replication. Nucleic Acids Research 16:4171
    [Google Scholar]
  35. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  36. Schlehofer J. R., Gissmann L., Matz B., Zur Hausen H. 1983; Herpes simplex virus-induced amplification of SV40 sequences in transformed Chinese hamster embryo cells. International Journal of Cancer 32:99–103
    [Google Scholar]
  37. Schlehofer J. R., Ehrbar M., Zur Hausen H. 1986; Vaccinia virus, herpes simplex virus, and carcinogens induce DNA amplification in a human cell line and support replication of a helpervirus-dependent parvovirus. Virology 152:110–117
    [Google Scholar]
  38. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  39. Spaete R. R., Frenkel N. 1982; The herpes simplex virus amplicon: a new eucaryotic defective-virus cloningamplifying vector. Cell 30:295–304
    [Google Scholar]
  40. Spaete R. R., Frenkel N. 1985; The herpes simplex virus amplicon : analyses of cis-acting replication functions. Proceedings of the National Academy of Sciences, U.S.A 82:694–698
    [Google Scholar]
  41. Stow N. D. 1982; Localization of an origin of DNA replication within the TRs/IRs repeated region of the herpes simplex virus type 1 genome. EMBO Journal 1:863–867
    [Google Scholar]
  42. Stow N. D., Mcmonagle E. C. 1983; Characterization of the TRs/IRs origin of DNA replication of herpes simplex virus type 1. Virology 130:427–438
    [Google Scholar]
  43. Stow N. D., Mcmonagle E. C., Davison A. J. 1983; Fragments from both termini of the herpes simplex virus type 1 genome contain signals required for the encapsidation of viral DNA. Nucleic Acids Research 11:8205–8220
    [Google Scholar]
  44. Stow N. D, Subak-Sharpe J. H., Wilkie N. M. 1978; Physical mapping of herpes simplex virus type 1 mutations by marker rescue. Journal of Virology 28:182–192
    [Google Scholar]
  45. Van Heuverswyn H., Flers W. 1979; Nucleotide sequence of the Hind-C fragment of simian virus 40 DNA. Comparison of the 5′-untranslated region of wild-type virus and of some deletion mutants. European Journal of Biochemistry 100:51–60
    [Google Scholar]
  46. Wahl G. M., Stern M., Stark G. R. 1979; Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Proceedings of the National Academy of Sciences, U.S.A 76:3683–3687
    [Google Scholar]
  47. Weller S. K., Spadaro A., Schaffer J. E., Murray A. W., Maxam A. M., Schaffer P. A. 1985; Cloning, sequencing and functional analysis of oriL, a herpes simplex virus type 1 origin of DNA synthesis. Molecular and Cellular Biology 5:930–942
    [Google Scholar]
  48. Wilkie N. M. 1973; The synthesis and substructure of herpes virus DNA : the distribution of alkali-labile single strand interruptions in HSV-1. Journal of General Virology 21:453–467
    [Google Scholar]
  49. Wilkie N. M. 1976; Physical maps for herpes simplex virus type 1 DNA for restriction endonucleases HindIII, HpaI, and Xbad. Journal of General Virology 20:222–233
    [Google Scholar]
  50. Wu C. A., Nelson N. J., Mcgeoch D. J., Challberg M. D. 1988; Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. Journal of Virology 62:435–443
    [Google Scholar]
  51. Zur Hausen H. 1983; Herpes simplex virus in human genital cancer. International Reviews on Experimental Pathology 25:307–322
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-6-1347
Loading
/content/journal/jgv/10.1099/0022-1317-70-6-1347
Loading

Data & Media loading...

Most cited Most Cited RSS feed