1887

Abstract

Summary

The coding region of the glycoprotein complex gII of pseudorabies virus (PRV) is located in the unique long part of the genome on I subfragments 1A and 1G of HI fragment 1 (map units 0·105 to 0·130). Fragment 1G which includes the 3′ end of the gII gene displays a size heterogeneity among different PRV strains and also within plaque isolates of a given strain. To reveal the cause of this heterogeneity and whether it might affect the gII-coding region we sequenced different 1G fragments of the PRV strains Ka, Phylaxia and Dessau, and determined the 3′ end of the gII mRNA by SI analysis. These data show that the size heterogeneity is caused by the presence of a variable number of tandemly repeated DNA sequence downstream but adjacent to the coding region of the glycoprotein gII gene. The 3′ end of the gII mRNA was mapped about 24 bp upstream of the first repeat unit. A 15 bp sequence 5′ GGGACGGAGGGGAGA 3′ is repeated from three to over 50 times in different 1G fragments. It is the only repeat unit present in strain Ka, whereas the Phylaxia and Dessau strains show additional modifications.

Keyword(s): glycoprotein gII , PRV and repeat units
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-5-1239
1989-05-01
2024-11-05
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/5/JV0700051239.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-5-1239&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C, Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  2. Berk A. J., Sharp P. A. 1977; Sizing and mapping of early adenovirus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732
    [Google Scholar]
  3. Biggin M. D., Gibson T. J., Hong G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of SciencesU.S.A 80:3963–3965
    [Google Scholar]
  4. Birnstiel M. L., Busslinger M., Strub K. 1985; Transcription termination and 3′ processing: the end is in site!. Cell 41:349–359
    [Google Scholar]
  5. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E., Minson A. C., Smith G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3063
    [Google Scholar]
  6. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  7. Davison A. I., Taylor P. 1987; Genetic relations between varicella-zoster virus and Epstein–Barr virus. Journal of General Virology 68:1067–1079
    [Google Scholar]
  8. Davison A. J., Wilkie N. M. 1981; Nucleotide sequences of the joint between the L and S segments of herpes simplex virus types 1 and 2. Journal of General Virology 55:315–331
    [Google Scholar]
  9. De Klein A., Van Agthoven T., Groffen C, Heisterkamp N., Groffen J., Grosveld G. 1986; Molecular analysis of both translocation products of a Philadelphia-positive CML patient. Nucleic Acids Research 14:7071–7082
    [Google Scholar]
  10. Gompels U. A., Craxton M. A., Honess R. W. 1988; Conservation of gene organization in the lymphotropic herpesviruses herpesvirus saimiri and Epstein–Barr virus. Journal of Virology 62:757–767
    [Google Scholar]
  11. Hammerschmidt W., Ludwig H., Buhk H.-J. 1986; Short repeats cause heterogeneity at genomic terminus of bovine herpesvirus 1. Journal of Virology 58:43–49
    [Google Scholar]
  12. Hammerschmidt W., Ludwig H., Buhk H.-J. 1988a; Specificity of cleavage in replicative-form DNA of bovine herpesvirus 1. Journal of Virology 62:1355–1363
    [Google Scholar]
  13. Hammerschmidt W., Conraths F., Mankertz J., Pauli G., Ludwig H., Buhk H.-J. 1988b; Conservation of a gene cluster including glycoprotein B in bovine herpesvirus type 2 (BHV-2) and herpes simplex virus type 1 (HSV-1). Virology 165:388–405
    [Google Scholar]
  14. Hampl H., Ben-Porat T., Ehrlicher L., Habermehl K.-O., Kaplan A. S. 1984; Characterization of the envelope proteins of pseudorabies virus. Journal of Virology 52:583–590
    [Google Scholar]
  15. Hondo R., Yogo Y. 1988; Strain variation of R5 direct repeats in the right-hand portion of the long unique segment of varicella-zoster virus DNA. Journal of Virology 62:2916–2921
    [Google Scholar]
  16. Kaplan A. S., Vatter A. E. 1959; A comparison of herpes simplex and pseudorabies viruses. Virology 7:394–407
    [Google Scholar]
  17. Keller P. M., Davison A. J., Lowe R. S., Bennett C. D., Ellis R. W. 1986; Identification and structure of the gene encoding gpII, a major glycoprotein of varicella-zoster Virus. Virology 152:181–191
    [Google Scholar]
  18. Kinchington P. R., Remenick J., Ostrove J. M., Straus S. E., Ruyechan W. T., Hay J. 1986; Putative glycoprotein gene of varicella-zoster virus with variable copy numbers of a 42-base-pair repeat sequence has homology to herpes simplex virus glycoprotein C. Journal of Virology 59:660–668
    [Google Scholar]
  19. Kouzarides T., Bankier A. T., Satchwell S. C., Weston K., Tomlinson P., Barrell B. G. 1987; Large-scale rearrangement of homologous regions in the genomes of HCMV and EBV. Virology 157:397–413
    [Google Scholar]
  20. Lukàcs N., Thiel H.-J., Mettenleiter TH. C., Rziha H.-J. 1985; Demonstration of three major species of pseudorabies virus glycoproteins and identification of a disulfide-linked glycoprotein complex. Journal of Virology 53:166–173
    [Google Scholar]
  21. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Mettenleiter TH. C., Lukacs N., Rziha H.-J. 1985a; Mapping of the structural gene of pseudorabies virus glycoprotein A and identification of two non-glycosylated precursor polypeptides. Journal of Virology 53:52–57
    [Google Scholar]
  23. Mettenleiter TH. C., Lukacs N., Rziha H.-J. 1985b; Pseudorabies virus avirulent strains fail to express a major glycoprotein. Journal of Virology 56:307–311
    [Google Scholar]
  24. Mettenleiter TH. C., Lukacs N., Thiel H.-J., Schreurs C., Rziha H.-J. 1986; Location of the structural gene of pseudorabies virus glycoprotein complex gll. Virology 152:66–75
    [Google Scholar]
  25. Mizusawa S., Nishimura S., Seela F. 1986; Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of dGTP. Nucleic Acid Research 14:1319–1324
    [Google Scholar]
  26. Mocarski E. S., Roizman B. 1982; Structure and role of the herpes simplex virus DNA termini in inversion, circularization and generation of virion DNA. Cell 31:89–97
    [Google Scholar]
  27. Norrander J., Kempe T., Messing J. 1983; Construction of improved M13 vectors using oligonucleotide- directed mutagenesis. Gene 26:101–106
    [Google Scholar]
  28. Pellett P. E., Biggin M. D., Barrell B., Roizman B. 1985; Epstein–Barr virus genome may encode a protein showing significant amino acid and predicted secondary structure homology with glycoprotein B of herpes simplex virus 1. Journal of Virology 56:807–813
    [Google Scholar]
  29. Petrovskis E. A., Timmins J. G., Armentrout M. A., Marchioli C. C., Yancey R. J. Jr, Post L. E. 1986a; DNA sequence of the gene for pseudorabies virus gp50, a glycoprotein without N-linked glycosylation. Journal of Virology 59:216–223
    [Google Scholar]
  30. Petrovskis E. A., Timmins J. G., Post L. E. 1986b; Use of lambda gtl 1 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins. Journal of Virology 60:185–193
    [Google Scholar]
  31. Quinn J. P., McGeoch D. J. 1985; DNA sequence of the region in the genome of herpes simplex virus type 1 containing the genes for DNA polymerase and the major DNA binding protein. Nucleic Acids Research 13:8143–8163
    [Google Scholar]
  32. Rea T. J., Timmins J. G., Long G. W., Post L. E. 1985; Mapping and sequence of the gene for the pseudorabies virus glycoprotein which accumulates in the medium of infected cells. Journal of Virology 54:21–29
    [Google Scholar]
  33. Rixon F. J., Campbell M. E., Clements J. B. 1984; A tandemly reiterated DNA sequence in the long repeat region of herpes simplex virus type 1 found in close proximity to immediate-early mRNA 1. Journal of Virology 52:715–718
    [Google Scholar]
  34. Robbins A. K., Watson R. J., Whealy M. E., Hays W. W., Enquist L. W. 1986; Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein C. Journal of Virology 58:339–347
    [Google Scholar]
  35. Robbins A. K., Dorney D. J., Wathen M. W., Whealy M. E., Gold C., Watson R. J., Holland L. E., Weed S. D., Levine M., Glorioso J. C., Enquist L. W. 1987; The pseudorabies virus gII gene is closely related to the gB glycoprotein gene of herpes simplex virus. Journal of Virology 61:2691–2701
    [Google Scholar]
  36. Roizman B., Carmichael L. E., Deinhardt F., De-The G., Nahmias A. J., Plowright W., Rapp F., Sheldrick P., Takahaski M., Wolf K. 1981; Taxonomy: Herpesviridae. Intervirology 16:201–217
    [Google Scholar]
  37. Sanger F., Coulson A. R., Barrell B. G., Smith A. J. H., Roe B. A. 1980; Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. Journal of Molecular Biology 143:161–178
    [Google Scholar]
  38. Sawada I., Schmid C. W. 1986; Primate evolution of the α-globin gene cluster and its Alu-like repeats. Journal of Molecular Biology 192:693–709
    [Google Scholar]
  39. Wathen M. W., Wathen L. M. K. 1984; Isolation, characterization, and physical mapping of a pseudorabies virus mutant containing antigenically altered gp50. Journal of Virology 51:57–62
    [Google Scholar]
  40. Whitbeck J. C., Bello L. J., Lawrence W. C. 1988; Comparison of the bovine herpesvirus 1 gl gene and the herpes simplex virus type 1 gB gene. Journal of Virology 62:3319–3327
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-70-5-1239
Loading
/content/journal/jgv/10.1099/0022-1317-70-5-1239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error