1887

Abstract

SUMMARY

The nucleotide sequence of cDNA copies of grapevine fanleaf virus (strain F13) satellite RNA has been determined. The primary structure obtained was 1114 nucleotides in length, excluding the poly(A) tail, and contained only one long open reading frame encoding a 341 residue, highly hydrophilic polypeptide of 37 275. The coding sequence was bordered by a leader of 14 nucleotides and a 3′-terminal non-coding region of 74 nucleotides. No homology has been found with small satellite RNAs associated with other nepoviruses. Two limited homologies of eight nucleotides have been detected between the satellite RNA in grapevine fanleaf virus and those in tomato black ring virus, and a consensus sequence U. G/UGAAAAU/AU/AU/A at the 5′ end of nepovirus RNAs is reported. A less extended consensus exists in this region in comovirus and picornavirus RNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-4-955
1989-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/4/JV0700040955.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-4-955&mimeType=html&fmt=ahah

References

  1. Allison R., Johnston R. E., Dougherty W. G. 1986; The nucleotide sequence of the coding region of tobacco etch virus genomic RNA: evidence for the synthesis of a single polyprotein. Virology 154:9–20
    [Google Scholar]
  2. Bol J. F., Kraal B., Broderode F. T. 1974; Limited proteolysis of alfalfa mosaic virus: influence on the structural and biological function of the coat protein. Virology 58:101–110
    [Google Scholar]
  3. Boubals D. 1962; La lutte contre le court-noué à Frontignan. Le Progres Agricole et Viticole 6:144–157
    [Google Scholar]
  4. Buzayan J. M., Gerlach W. L., Bruening G., Keese P., Gould A. R. 1986; Nucleotide sequence of satellite tobacco ringspot virus RNA and its relationship to multimeric forms. Virology 151:186–199
    [Google Scholar]
  5. Collmer C. W., Hadidi A., Kaper J. M. 1985; Nucleotide sequence of the satellite of peanut stunt virus reveals structural homologies with viroids and certain nuclear and mitochondrial introns. Proceedings of the National Academy of Sciences, U.S.A 82:3110–3114
    [Google Scholar]
  6. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  7. Dvechler M., Skern T., Sommergruber W., Neubauer C, Gruendler P., Fogy I., Blaas D., Kuechler E. 1987; Evolutionary relationships within the human rhinovirus genus: comparison of the serotypes 89,2,14. Proceedings of the National Academy of Sciences, U.S.A 84:2605–2609
    [Google Scholar]
  8. Fitzgerald M., Shenk T. 1981; The sequence 5′ AAUAAA 3′ forms part of the recognition site for polyadenylation of the late SV40 mRNAs. Cell 24:251–260
    [Google Scholar]
  9. French S., Robson B. 1983; What is conservative substitution?. Journal of Molecular Evolution 19:171–175
    [Google Scholar]
  10. Garcia-Arenal F., Zaitlin M., Palukaitis P. 1987; Nucleotide sequence analysis of six satellite RNAs of cucumber mosaic virus: primary sequence and secondary structure alterations do not correlate with differences in pathogenicity. Virology 158:339–347
    [Google Scholar]
  11. Harris T. J. R. 1979; The nucleotide sequence at the 5′ end of foot and mouth disease virus RNA. Nucleic Acids Research 7:1765–1785
    [Google Scholar]
  12. Heidecker G., Messing J. 1983; Sequence analysis of zein cDNAs obtained by an efficient mRNA cloning method. Nucleic Acids Research 11:4891–4906
    [Google Scholar]
  13. Hemmer O., Meyer M., Greif C., Fritsch C. 1987; Comparison of the nucleotide sequences of five tomato black ring virus satellite RNAs. Journal of General Virology 68:1823–1833
    [Google Scholar]
  14. Hopp T. P., Woods K. R. 1981; Prediction of protein antigenic determinants from amino acid sequences. Proceedings of the National Academy of Sciences, U.S.A 78:3824–3828
    [Google Scholar]
  15. Hubacek J., Glover S. W. 1970; Complementation analysis of temperature-sensitive host specificity mutations in Escherichia coli . Journal of Molecular Biology 50:111–127
    [Google Scholar]
  16. Ish-Horowicz D., Burke J. F. 1981; Rapid and efficient cosmid vector cloning. Nucleic Acids Research 9:2989–2998
    [Google Scholar]
  17. Jordan G. W., Cohen S. H., Dandekar S., Van Den Brink K. M. 1987; The genomic RNA of diabetogenic encephalomyocarditis virus: characterization and molecular cloning. Virology 159:120–125
    [Google Scholar]
  18. Kitamura N., Semler B. L., Rothberg P. G., Larsen G. R., Adler C. J., Dorner A. J., Emini E. A., Hanecak R., Lee J. J., Van Der Werf S., Anderson C. W., Wimmer E. 1981; Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature, London 291:547–553
    [Google Scholar]
  19. Le Gall O., Candresse T., Dunez J. 1988; Nucleotide sequence of the 3′ ends of the double-stranded RNAs of grapevine chrome mosaic nepovirus. Journal of General Virology 69:423–428
    [Google Scholar]
  20. Lomonossoff G. P., Shanks M. 1983; The nucleotide sequence of cowpea mosaic virus B RNA. EMBO Journal 2:2253–2258
    [Google Scholar]
  21. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Masuta C, Zuidema D., Hunter B. G., Heaton L. A., Sopher D. S., Jackson A. O. 1987; Analysis of the genome of satellite panicum mosaic virus. Virology 159:329–338
    [Google Scholar]
  23. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  24. Messing J. 1983; New M13 vectors for cloning. Methods in Enzymology 101:20–77
    [Google Scholar]
  25. Pinck L., Fuchs M., Pinck M., Ravelonandro M., Walter B. 1988; A satellite RNA in grapevine fanleaf virus strain F13. Journal of General Virology 69:233–239
    [Google Scholar]
  26. Poch O., Daney De Marcillac D., Exinger F., Roy A., Losson R. 1988; Functional domains of the regulatory protein PPR1: use of the V.R.P. computer program. Special issue of the 14th International Conference on yeast genetics and molecular biology. Yeast 4:S416
    [Google Scholar]
  27. Quacquarelli A., Gallitelli D., Savino V., Martelli G. P. 1976; Properties of grapevine fanleaf virus. Journal of General Virology 32:349–360
    [Google Scholar]
  28. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  29. Van Wezenbeek P., Verver J., Harmsen J., Vos P., Van Kammen A. 1983; Primary structure and gene organization of the middle component RNA of cowpea mosaic virus. EMBO Journal 2:941–946
    [Google Scholar]
  30. Weiss R. B., Dunn D. M., Atkins J. F., Gesteland R. F. 1987; Slippery runs, shifty stops, backward steps, and forward hops: –2, –1, +1, +2, +5, +6 ribosomal frameshifting. Cold Spring Harbor Symposia on Quantitative Biology 52:687–693
    [Google Scholar]
  31. Wu S., Rinehart C. A., Kaesberg P. 1987; Sequence and organization of southern bean mosaic virus genomic RNA. Virology 161:73–80
    [Google Scholar]
  32. Youvan D. C., Hearst I. E. 1981; A sequence from Drosophila melanogaster 18S rRNA bearing the conserved hypermodified nucleotide: analysis by reverse transcription and high-performance liquid chromatography. Nucleic Acids Research 9:1723–1741
    [Google Scholar]
  33. Ysebaert M., Van Emmelo J., Fiers W. 1980; Total nucleotide sequence of a nearly full-size DNA copy of satellite tobacco necrosis virus RNA. Journal of Molecular Biology 143:273–287
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-4-955
Loading
/content/journal/jgv/10.1099/0022-1317-70-4-955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error