1887

Abstract

SUMMARY

Three transmissible gastroenteritis (TGE) virus-specific T helper (Th) cell hybridomas have been generated from virus-primed BALB/c mice, by fusion with the thymoma BW5147. The hybridomas responded to purified u.v.-inactivated TGE virus with interleukin production and growth inhibition. TGE virus recognition by the hybridomas was restricted by the major histocompatibility complex: only splenocytes from syngeneic or semi-syngeneic mice were able to recognize the antigen. The three hybridomas were Thy 1.2, but did not express detectable levels of Lyt 1 or Lyt 2 antigens by fluorescent cell sorting analysis. Only one hybridoma (T. 1J. B5) expressed the L3T4 marker. These hybridomas had helper activity, as they were able to reconstitute the synthesis of TGE virus-specific antibodies by Th cell-depleted spleen cells from immune BALB/c mice. The antibodies that they induced specifically neutralized by 10- to 10-fold the infectivity of TGE virus, ruling out the possibility of inhibition of virus replication by interferon. These hybridomas could be very useful for identifying antigenic domains in TGE virus recognized by Th cells, which cooperate with B cells in the synthesis of neutralizing antibodies.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-3-659
1989-03-01
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/3/JV0700030659.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-3-659&mimeType=html&fmt=ahah

References

  1. Ashwell J. D., Cunningham R. E., Noguchi P. D., Hernández D. 1987; Cell growth Cycle block of T cell hybridomas upon activation with antigen. Journal of Experimental Medicine 165:173–194
    [Google Scholar]
  2. Berzofsky J. A., Cease K. B., Cornette J. L., Pouge J. L., Margalit H., Berkower I. J., Good M. F., Miller L. H., Delisi C. 1987; Protein antigenic structures recognized by T cells: potential application to vaccine design. Immunological Reviews 98:9–52
    [Google Scholar]
  3. Brian D. A., Dennis D. E., Guy J. S. 1980; Genome of porcine transmissible gastroenteritis virus. Journal of Virology 34:410–415
    [Google Scholar]
  4. Burns W. H., Billups L. C., Notkins A. L. 1975; Thymus dependence of viral antigens. Nature, London 256:654–656
    [Google Scholar]
  5. Casal I., Viñuela E., Enjuanes L. 1987; Synthesis of African swine fever (ASF) virus-specific antibodies in vitro in a porcine leucocyte system. Immunology 62:207–213
    [Google Scholar]
  6. Chan W. L., Lukig M. L., Liew F. Y. 1985; Helper T cells induced by an immunopurified herpes simplex virus type 1 (HSV-1) 115 kilodalton glycoprotein (gB) protect mice against HSV-1 infection. Journal of Experimental Medicine 162:1304–1318
    [Google Scholar]
  7. Charley B., Laude H. 1988; Induction of alpha interferon by transmissible gastroenteritis corona virus: role of transmembrane glycoprotein El. Journal of Virology 62:8–11
    [Google Scholar]
  8. Correa I., Jiménez G., Suñé C., Bullido M. J., Enjuanes L. 1988; Antigenic structure of E2 glycoprotein from transmissible gastroenteritis coronavirus. Virus Research 10:77–94
    [Google Scholar]
  9. Crispe N., Bevan M. J. 1987; Expression and functional significance of the Jl Id marker on mouse thymocytes. Journal of Immunology 138:2013–2018
    [Google Scholar]
  10. Delmas B., Gelfi J., Laude H. 1986; Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. Journal of General Virology 67:1405–1418
    [Google Scholar]
  11. Enjuanes L., Lee J. C., Ihle J. N. 1979; Antigenic specificities of the cellular immune response of C57BL/6 mice to the Moloney leukemia/sarcoma virus complex. Journal of Immunology 122:665–674
    [Google Scholar]
  12. Enjuanes L., Correa L, Jiménez G., Melgosa M. P., Bullido M. J. 1987; Critical epitopes in transmissible gastroenteritis virus neutralization. In Coronavirus351–363 Lai M. M. C., Stohlman S. A. New York & London: Plenum Press;
    [Google Scholar]
  13. Folks T. M., Sell K. W. 1983; Detection of helper and suppressor T-cell lines to soluble antigens using a modified ELISA-system. Journal of Immunological Methods 57:43–50
    [Google Scholar]
  14. Freeman G. J., Clayberger C, Dekruyff R., Rosenblum D. S., Cantor H. 1983; Sequential expression of new gene programs in inducer T-cell clones. Proceedings of the National Academy of SciencesU.S.A 804094–4098
    [Google Scholar]
  15. García-Barreno B., Sanz A., Nogal M. L., Viñuela E., Enjuanes L. 1986; Monoclonal antibodies of African swine fever virus: antigenic differences among field virus isolates and viruses passaged in cell culture. Journal of Virology 58:385–392
    [Google Scholar]
  16. Garwes D. J., Lucas M. H., Higgins D. A., Pike B. V., Cartwright S. F. 1978–1979; Antigenicity of structural components from porcine transmissible gastroenteritis virus. Veterinary Microbiology 3:179–190
    [Google Scholar]
  17. Gillis S., Smith K. A. 1977; Long term culture of tumour-specific cytotoxic T cells. Nature, London 268:154–156
    [Google Scholar]
  18. Gillis S., Ferm M. M., Ou W., Smith K. A. 1978; T cell growth factor: parameters of production and a quantitative microassay for activity. Journal of Immunology 120:2027–2032
    [Google Scholar]
  19. Gough P. M., Ellis C. H., Frank C. J., Johnson C. J. 1983a; A viral subunit immunogen for porcine transmissible gastroenteritis. Antiviral Research 3:211–221
    [Google Scholar]
  20. Gough P. M., Frank C. J., Moore D. G., Sagona M. A., Johnson C. J. 1983b; Lactogenic immunity to transmissible gastroenteritis virus induced by a subunit immunogen. Vaccine 1:37–41
    [Google Scholar]
  21. Hurwitz J. L., Heber-Katz E., Hackett C. J., Gerhard W. 1984; Characterization of the murine Th response to influenza virus hemagglutinin: evidence for three major specificities. Journal of Immunology 133:3371–3377
    [Google Scholar]
  22. Ihle J. N., Yurconic M. Jr, Hanna M. G. Jr 1973; Autogenous immunity to endogenous RNA tumor virus: radioimmune precipitation assay of mouse serum antibody levels. Journal of Experimental Medicine 138:194–208
    [Google Scholar]
  23. Jiménez G., Correa I., Melgosa M. P., Bullido M. J., Enjuanes L. 1986; Critical epitopes in transmissible gastroenteritis virus neutralization. Journal of Virology 60:131–139
    [Google Scholar]
  24. Julius M. H. E., Simpson E., Herzenberg L. A. 1973; A rapid method for the isolation of functional thymus- derived murine lymphocytes. European Journal of Immunology 3:645–649
    [Google Scholar]
  25. Kapke P. A., Brian D. A. 1986; Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology 151:41–49
    [Google Scholar]
  26. Kearney J. F., Radbruck A., Liesegang B., Rajewsky K. 1979; A new mouse myeloma line which has lost immunoglobulin expression but permits the construction of antibody secreting hybrid cell lines. Journal of Immunology 123:1548–1550
    [Google Scholar]
  27. Kupper T., Horowitz M., Lee F., Robb R., Flood P. M. 1987; Autocrine growth of T cells independent of interleukin 2: identification of interleukin 4 (IL-4, BSF-1) as an autocrine growth factor for a cloned antigen-specific helper T cell. Journal of Immunology 138:4280–4287
    [Google Scholar]
  28. Laude H., Chapsal J.-M., Gelfi J., Labiau S., Grosclaude J. 1986; Antigenic structure of transmissible gastroenteritis virus. I. Properties of monoclonal antibodies directed against virion proteins. Journal of General Virology 67:119–130
    [Google Scholar]
  29. Laude H., Rasschaert D., Huet J.-C. 1987; Sequence and N-terminal processing of the transmembrane protein El of the coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1687–1693
    [Google Scholar]
  30. Ledbetter J. A., Herzenberg L. A. 1979; Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunological Reviews 47:63–69
    [Google Scholar]
  31. Mcclurkln A. W., Norman J. O. 1986; Studies on transmissible gastroenteritis of swine. II. Selected characteristics of a cytopathogenic virus common to five isolates from transmissible gastroenteritis. Canadian Journal of Comparative Veterinary Sciences 30:190–198
    [Google Scholar]
  32. Milich D. R., Mclachlan A., Thornton G. B., Hughes J. L. 1987; Antibody production to the nucleocapsid and envelope of the hepatitis B virus primed by a single synthetic T cell site. Nature, London 329:547–549
    [Google Scholar]
  33. Mosmann T. R., Cherwinski H., Bond M. W., Giedlin M. A., Coffman R. L. 1986; Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. Journal of Immunology 136:2348–2357
    [Google Scholar]
  34. Oi V. T., Jones P. P., Goding J. W., Herzenberg L. A., Herzenberg L. A. 1978; Properties of monoclonal antibodies to mouse Ig allotypes, H-2, and la antigens. Current Topics in Microbiology and Immunology 81:115–129
    [Google Scholar]
  35. Ozato K., Mayer N. m., Sachs D. H. 1982; Monoclonal antibodies to mouse major histocompatibility complex antigens. Transplantation 34:113–120
    [Google Scholar]
  36. Perlmann P., Berzins K., Björkman A., Högh B., Kabilan L., Patarroyo E. M., Perlmann H., Petersen E., Troye-Blomberg M., Wahlin B. 1987; Humoral and cellular immune responses to the C-terminal amino acid repeats of Pf 155, a potential vaccine candidate of the human malaria parasite Plasmodiumfalciparum . In Vaccines 87:86–91 Chanock R. M., Lerner R. A., Brown F., Ginsberg H. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Pons M. W. 1977; Early RNA synthesis in influenza virus-infected cells. Virology 76:855–879
    [Google Scholar]
  38. Rajewsky K., Schirrmacher V., Nare S., Jerne N. K. 1969; The requirement of more than one antigenic determinant for immunogenicity. Journal of Experimental Medicine 129:1131–1143
    [Google Scholar]
  39. Rasschaert D., Laude H. 1987; The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis vims. Journal of General Virology 68:1883–1890
    [Google Scholar]
  40. Rothbard J. B. 1986; Peptides and the cellular immune response. Annales de I’Institut Pasteur 137E:518–526
    [Google Scholar]
  41. Saif L. J., Bohl E. H. 1986; Transmissible gastroenteritis. In Diseases of Swine, 6.255–274 Leman A. D., Straw B., Glock R. D., Mengeling W. L., Penny R. H. C., Scholl E. Ames: Iowa State University Press;
    [Google Scholar]
  42. Sanderson A. R. 1984; Use of MHC molecules to augment immunogenicity: widely applicable MHC purification technology and more evidence for superior carrier function. In Modern Approaches to Vaccines. Molecular and Chemical Basis of Virus Virulence and Immunogenicity379–383 Chanock R. M., Lerner R. A. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  43. Sanz A., García-Barreno B., Nogal M. L., Viñuela E., Enjuanes L. 1985; Monoclonal antibodies specific for African swine fever virus proteins. Journal of Virology 54:199–206
    [Google Scholar]
  44. Slddell S., Wege H., Ter Meulen V. 1983; The biology of coronaviruses. Journal of General Virology 64:761–776
    [Google Scholar]
  45. Sturman L. S., Holmes K. 1983; The molecular biology of coronaviruses. Advances in Virus Research 28:35–112
    [Google Scholar]
  46. Sullivan J. L., Mayner R. E., Barry D. W., Ennis F. A. 1976; Influenza virus infection in nude mice. Journal of Infectious Diseases 133:91–94
    [Google Scholar]
  47. Tada T., Nonaka M. 1982; T-cell hybridomas. An overview. In Isolation, Characterization, and Utilization of T Lymphocyte Clones95–107 Fathman G., Frank W. F. New York & London: Academic Press;
    [Google Scholar]
  48. Tan P. L. J., Booth R. J., Prestidge R. L., Watson J. D., Dower S. K., Gillis S. 1985; Induction Of Antibody responses to influenza virus in human lymphocyte cultures. I. Role of interleukin 2. Journal of Immunology 135:2128–2133
    [Google Scholar]
  49. Wilde D. B., Marrack P., Kappler J., Dialynas D. P., Fitch F. W. 1983; Evidence implicating L3T4 in class II MHC antigen reactivity: monoclonal antibody GK 1.5 (anti-L3T4a) blocks class II MHC antigen-specific proliferation, release of lymphokines, and binding by cloned murine helper T lymphocyte lines. Journal of Immunology 131:2178–2183
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-70-3-659
Loading
/content/journal/jgv/10.1099/0022-1317-70-3-659
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error