Mapping of Neutralizing Epitopes to Fragments of the Bovine Coronavirus E2 Protein by Proteolysis of Antigen–Antibody Complexes Free

Abstract

SUMMARY

Neutralizing antigenic domains on bovine coronavirus gp100/E2 were mapped to fragments of this protein by proteolytic cleavage and fragment analysis. The procedure involved analysis of fragments generated after incubation of E2–monoclonal antibody complexes with various proteases. The smallest antibody-bound fragments obtained were a 50K fragment following V8 protease and submaxillary protease digestion, and a 37K fragment following trypsin digestion. Trypsin also produced a transient antibody-bound 50K fragment. A 40K fragment which was not bound by antibody was observed following digestions with all three proteases. The 50K fragments generated by V8, submaxillary protease and trypsin comigrated on gels and displayed the same altered mobility under non-reducing conditions, suggesting identity of these fragments and indicating the presence of disulphide linkages in these fragments. The 40K fragments generated by these three enzymes also comigrated and displayed the same altered mobility under non-reducing conditions. The 37K trypsin fragment contained both neutralizing domains, A and B.

Keyword(s): BCV , E2 protein and epitope mapping
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-3-647
1989-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/3/JV0700030647.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-3-647&mimeType=html&fmt=ahah

References

  1. Binns M. M., Boursnell M. E. G., Cavanagh D., Pappln D. J. C., Brown T. D. K. 1985; Cloning and sequencing of the gene encoding the spike protein of the coronavirus IBV. Journal of General Virology 66:719–726
    [Google Scholar]
  2. Cavanagh D. 1981; Structural polypeptides of coronavirus IBV. Journal of General Virology 53:93–103
    [Google Scholar]
  3. Cavanagh D. 1983; Coronavirus IBV: structural characterization of the spike protein. Journal of General. Virology 64:2577–2583
    [Google Scholar]
  4. Cavanagh D., Davis P. J., Pappin D. J. C., Binns M. M., Boursnell M. E. G., Brown T. D. K. 1986; Coronavirus IBV: partial amino terminal sequencing of spike polypeptide S2 identifies the sequence Arg-Arg-Phe-Arg-Arg at the cleavage site of the spike precursor propolypeptide of the IBV strains Beaudette and M41. Virus Research 4:133–143
    [Google Scholar]
  5. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. 1977; Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. Journal of Biological Chemistry 252:1102–1106
    [Google Scholar]
  6. Collins A. R., Knobler R. L., Powell H., Buchmeier M. J. 1982; Monoclonal antibodies to murine hepatitis virus-4 (strain JHM) define the viral glycoprotein for attachment and cell-cell fusion. Virology 119:358–371
    [Google Scholar]
  7. Correa L, Jiménez G., Sune C, Bullido M. J., Enjuanes L. 1988; Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis virus. Virus Research 10:77–94
    [Google Scholar]
  8. De Groot R. J., Maduro J., Lenstra J. A., Horzinek M. C., Van Der Zeijst B. A. M., Spaan W. J. M. 1987; cDNA cloning and sequence analysis of the gene encoding the peplomer protein of feline infectious peritonitis virus. Journal of General Virology 68:2639–2646
    [Google Scholar]
  9. Delmas B., Laude H. 1987 VII International Congress of Virology Abstract No. OP 27.9
    [Google Scholar]
  10. Delmas B., Gelfi J., Laude H. 1986; Antigenic structure of transmissible gastroenteritis virus. II. Domains in the peplomer glycoprotein. Journal of General Virology 67:1405–1418
    [Google Scholar]
  11. Deregt D., Babiuk L. A. 1987; Monoclonal antibodies to bovine coronavirus: characteristics and topographical mapping of neutralizing epitopes on the E2 and E3 glycoproteins. Virology 161:410–420
    [Google Scholar]
  12. Deregt D., Sabara M., Babiuk L. A. 1987; Structural proteins of bovine coronavirus and their intracellular processing. Journal of General Virology 68:2863–2877
    [Google Scholar]
  13. Eisenberg R. J., Long D., Pereira L., Hampar B., Zweig M., Cohen G. H. 1982; Effect of monoclonal antibodies on limited proteolysis of native glycoprotein gD of herpes simplex virus type 1. Journal of Virology 41:478–488
    [Google Scholar]
  14. Jiménez G., Correa L, Melgosa M. P., Bullido M. J., Enjuanes L. 1986; Critical epitopes in transmissible gastroenteritis virus neutralization. Journal of Virology 60:131–139
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  16. Luytjes W., Sturman L. S., Bredenbeek P. J., Charite J., Van Der Zeijst B. A. M., Horzinek M. C., Spaan W. J. M. 1987; Primary structure of the glycoprotein E2 of coronavirus MHV-A59 and identification of the trypsin cleavage site. Virology 161:479–487
    [Google Scholar]
  17. Makino S., Fleming J. O., Keck J. G., Stohlman S. A., Lai M. M. C. 1987; RNA recombination of coronaviruses: localization of neutralizing epitopes and neuropathogenic determinants on the carboxyl terminus of peplomers. Proceedings of the National Academy of SciencesU.S.A 84:6567–6571
    [Google Scholar]
  18. Mockett A. P. A., Cavanagh D., Brown T. D. K. 1984; Monoclonal antibodies to the S1 spike and membrane proteins of avian infectious bronchitis coronavirus strain Massachusetts M41. Journal of General Virology 65:2281–2286
    [Google Scholar]
  19. Niesters H. G. M., Bleumink-Pluym N. M. C., Osterhaus A. D. M. E., Horzinek M. C., Van Der Zeijst B. A. M. 1987; Epitopes on the peplomer protein of infectious bronchitis virus strain M41 as defined by monoclonal antibodies. Virology 161:511–519
    [Google Scholar]
  20. Rasschaert D., Laude H. 1987; The predicted primary structure of the peplomer protein E2 of the porcine coronavirus transmissible gastroenteritis virus. Journal of General Virology 68:1883–1890
    [Google Scholar]
  21. Schmidt I., Skinner M., Siddell S. 1987; Nucleotide sequence of the gene encoding the surface projection glycoprotein of coronavirus MHV-JHM. Journal of General Virology 68:47–56
    [Google Scholar]
  22. Stern D. F., Sefton B. M. 1982; Coronavirus proteins: biogenesis of avian infectious bronchitis virus virion proteins. Journal of Virology 44:794–803
    [Google Scholar]
  23. Sturman L. S., Ricard C. S., Holmes K. V. 1985; Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. Journal of Virology 56:904–911
    [Google Scholar]
  24. Talbot P. J., Salmi A. A., Knobler R. L., Buchmeier M. J. 1984; Topographical mapping of epitopes on the glycoproteins of murine hepatitis virus-4 (JHM): correlation with biological activities. Virology 132:250–260
    [Google Scholar]
  25. Wege H., Dorries R., Wege H. 1984; Hybridoma antibodies to the murine coronavirus JHM: characterization of epitopes on the peplomer protein (E2). Journal of General Virology 65:1931–1942
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-3-647
Loading
/content/journal/jgv/10.1099/0022-1317-70-3-647
Loading

Data & Media loading...

Most cited Most Cited RSS feed