1887

Abstract

SUMMARY

Stimulation of mouse macrophages with Newcastle disease virus (NDV) leads to a rapid and high interferon (IFN) response. The magnitude of this response is influenced by the mouse genotype. We have analysed NDV-induced IFN production at the protein and mRNA levels in two different populations of macrophages derived from ‘high producer’ C57BL/6 and ‘low producer’ BALB/c mice . The data indicate that bone marrow and peritoneal macrophages from both strains grown in the presence of L cell conditioned medium (CM) as a source of macrophage colony-stimulating factor 1 (M-CSF) or purified murine M-CSF produce 10- to 50-fold more IFN on a per cell basis than cultures of resident peritoneal macrophages. These differences were also found when steady state levels of IFN mRNA were analysed. Differential analysis for the ratios of IFN- and IFN- showed that CM- or M-CSF-cultured macrophages produced equal amounts of both IFN species as determined by specific monoclonal antibodies and hybridization experiments using IFN- and IFN- DNA probes, whereas resident peritoneal macrophages induced under identical conditions produced almost exclusively IFN-. This suggests a stimulating effect of M-CSF on IFN synthesis in NDV-induced cultures of mouse macrophages, which is in part due to additional activation of IFN- gene expression.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-3-575
1989-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/3/JV0700030575.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-3-575&mimeType=html&fmt=ahah

References

  1. Arnold B., Burgert H.-G., Archibald A. L., Kvist S. 1984; Complete nucleotide sequence of the murine H-2Kk gene. Comparison of three H-2K locus alleles. Nucleic Acids Research 12:9473–9487
    [Google Scholar]
  2. Belardelli F., Vignaux F., Proietti E., Gresser I. 1984; Injection of mice with antibody to interferon renders peritoneal macrophages permissive for vesicular stomatitis virus and encephalomyocarditis virus. Proceedings of the National Academy of SciencesU.S.A 81602–606
    [Google Scholar]
  3. Belardelli F., Gessani S., Proietti E., Locardi C, Borghi P., Watanabe Y., Kawade Y., Gresser I. 1987; Studies on the expression of spontaneous and induced interferons in mouse peritoneal macrophages by means of monoclonal antibodies to mouse interferons. Journal of General Virology 68:2203–2212
    [Google Scholar]
  4. Boosmann A., Strickler J. E., Wilson K. J., Stanley E. R. 1987; Partial primary structures of human and murine macrophage colony stimulating factor (CSF-1). Biochemical and Biophysical Research Communications 144:74–80
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  6. Bradley T. R., Metcalf D. 1976; The growth of mouse bone marrow cells in vitro. Australian Journal of Biological and Medical Sciences 44:287–300
    [Google Scholar]
  7. Brehm G., Kirchner H. 1986; Analysis of the interferons induced in mice in vivo and in macrophages in vitro by Newcastle disease virus and by polyinosinic-polycytidylic acid. Journal of Interferon Research 6:21–28
    [Google Scholar]
  8. Brehm G., Storch E., Kirchner H. 1986; Characterization of interferon induced in murine macrophage cultures by 10-carboxymethyl-9-acridanone. Natural Immunity and Cell Growth Regulation 5:50–59
    [Google Scholar]
  9. Chirgwin J. M., Przybyla A. E., Macdonald R. J., Rutter W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299
    [Google Scholar]
  10. Cleveland D. W., Lopata M. A., Macdonald R. J., Cowan N. I., Rutter W. J., Kirschner M. W. 1980; Number and evolutionary conservation of α- and β-tubulin and cytoplasmic β- and γ-actin genes using specific cloned cDNA probes. Cell 20:95–105
    [Google Scholar]
  11. Dandoy F., Demaeyer E., Demaeyer-Guignard J. 1981; Antiproliferative action of interferon on murine bone-marrow derived macrophages is influenced by the genotype of the marrow-donor. Journal of Interferon Research 1:263–270
    [Google Scholar]
  12. Demaeyer E., Demaeyer-Guignard I. 1969; Gene with quantitative effect on circulating interferon induced by Newcastle disease virus. Journal of Virology 3:506–512
    [Google Scholar]
  13. Demaeyer E., Fauve R. M., Demaeyer-Guignard J. 1971; Production d’interferon au niveau du macrophage. Annales de I’Institut Pasteur 120:438–446
    [Google Scholar]
  14. Demaeyer E., Hoyez M.-C., Demaeyer-Guignard J., Bailey D. W. 1979; Effect of mouse genotype on interferon production. III. Expression of If-1 by peritoneal macrophages. Immunogenetics 8:257–263
    [Google Scholar]
  15. Demaeyer-Guignard J., Zawatzky R., Dandoy F., Demaeyer E. 1983; An X-linked locus influences early serum interferon levels in the mouse. Journal of Interferon Research 3:241–252
    [Google Scholar]
  16. Domke-Opitz I., Poberschin P., Mittnacht S., Kirchner H. 1987; Role of interferon in persistent infection of macrophages with herpes simplex virus. Virology 159:306–311
    [Google Scholar]
  17. Enoch T., Zinn K., Maniatis T. 1986; Activation of human β-interferon gene requires an interferon-inducible factor. Molecular and Cellular Biology 6:801–810
    [Google Scholar]
  18. Feinberg A. P., Vogelstein B. 1983; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132:6–13
    [Google Scholar]
  19. Fleit H. B., Rabinovitch M. 1981a; Interferon induction in marrow-derived macrophages: regulation by L-cell conditioned medium. Journal of Cellular Physiology 108:347–352
    [Google Scholar]
  20. Fleit H. B., Rabinovitch M. 1981b; Production of interferon by in vitro derived bone marrow macrophages. Cellular Immunology 57:495–504
    [Google Scholar]
  21. Gresser I., Tovey M. G., Bandu M.-T., Maury C., Brouty-Boye D. 1976; Role of interferon in the pathogenesis of virus diseases in mice as demonstrated by the use of anti-interferon serum. I. Rapid evolution of encephalomyocarditis virus infection. Journal of Experimental Medicine 144:1305–1315
    [Google Scholar]
  22. Gresser I., Vignaux F., Belardelli F., Tovey M. G., Maunoury M.-T. 1985; Injection of mice with antibody to mouse interferon α/β decreases the level of 2′-5′ oligoadenylate synthetase in peritoneal macrophages. Journal of Virology 53:221–227
    [Google Scholar]
  23. Haase A., Brahic M., Stowring L., Blum H. 1984; Detection of viral nucleic acids by in situ hybridization. Methods in Virology 7:189–226
    [Google Scholar]
  24. Higashi Y., Sokawa Y., Watanabe Y., Kawade Y., Ohno S., Takaoka C., Taniguchi T. 1983; Structure and expression of a cloned cDNA for mouse interferon-β . Journal of Biological Chemistry 258:9522–9529
    [Google Scholar]
  25. Hirsch S., Austyn J. M., Gordon S. 1981; Expression of the macrophage-specific antigen F4/80 during differentiation of mouse bone marrow cells in culture. Journal of Experimental Medicine 154:713–725
    [Google Scholar]
  26. Hume D. A., Gordon S. 1983; Optimal conditions for proliferation of bone marrow-derived mouse macrophages in culture: the roles of CSF-1, serum, Ca2+, and adherence. Journal of Cellular Physiology 117:189–194
    [Google Scholar]
  27. Kawade Y., Watanabe Y. 1987; Characterization of rat monoclonal antibodies to mouse interferon α and β . Proceedings of the Third International TNO Meeting on the Biology of the Interferon System In The Biology of the Interferon System197–201 Cantell K., Schellekens H. Dordrecht: Martinus Nijhoff;
    [Google Scholar]
  28. Kawasaki E. S., Ladner M. B., Wang A. M., Van Arsdell J., Warren M. K., Coyne M. Y., Schweickart V. L., Lee M.-T., Wilson K. J., Boosman A., Stanley E. R., Ralp P., Mark D. F. 1985; Molecular cloning of a complementary DNA encoding human macrophage-specific colony-stimulating factor (CSF-1). Science 230:291–296
    [Google Scholar]
  29. Knight M, Cayley P. J., Silverman R. H., Wreschner H., Gilbert C. S., Brown R. E., Kerr I. M. 1980; Radioimmune radiobinding and HPLC analysis of 25A and related oligonucleotides from intact cells. Nature, London 288:189–192
    [Google Scholar]
  30. Koski I. R., Poplack D. G., Blaese R. M. 1976; A nonspecific esterase stain for the identification of monocytes and macrophages. In In vitro Methods in Cell-mediated and Tumour Immunity359–362 Bloom B. R. New York & London: Academic Press;
    [Google Scholar]
  31. Lawrence J. B., Singer R. H. 1985; Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acids Research 13:1777–1799
    [Google Scholar]
  32. Lee M.-T., Warren M. K. 1987; CSF-induced resistance to viral infection in murine macrophages. Journal of Immunology 138:3019–3022
    [Google Scholar]
  33. Lehrach H., Diamond D., Wozney I. M., Boedtker H. 1977; RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743
    [Google Scholar]
  34. Lopez C. 1975; Genetics of natural resistance to herpesvirus infections in mice. Nature, London 258:152–153
    [Google Scholar]
  35. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Metcalf D. 1986; The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood 67:257–267
    [Google Scholar]
  37. Metcalf D., Burgess A. W., Johnson G. R., Nicola N. A., Nice E. C., De Lamarter J., Thatcher D. R., Mermond J.-J. 1986; In vitro actions on hemopoietic cells of recombinant murine GM-CSF purified after production in Escherichia coli: comparison with purified native GM-CSF. Journal of Cellular Physiology 128:421–431
    [Google Scholar]
  38. Mogensen S. C., Virelizier I.-L. 1987; The interferon-macrophage alliance. In Interferon 855–84 Gresser I. Orlando & London: Academic Press;
    [Google Scholar]
  39. Moore R. N., Larsen H. S., Horohov D. W., Rouse B. T. 1984; Endogenous regulation of macrophage proliferative expansion by colony-stimulating factor-induced interferon. Science 223:178–181
    [Google Scholar]
  40. Morrison D. C., Jacobs D. M. 1976; Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 13:813–818
    [Google Scholar]
  41. Proietti E., Gessani F., Belardelli F., Gresser I. 1986; Mouse peritoneal cells confer an antiviral state on mouse cell monolayers: role of interferon. Journal of Virology 57:456–463
    [Google Scholar]
  42. Rentrop M., Knapp B., Winter H., Schweizer J. 1986; Aminoalkylsilane-treated glass slides as support for in situ hybridization of keratin cDNAs to frozen tissue sections under varying fixation and pretreatment conditions. Histochemical Journal 18:271–276
    [Google Scholar]
  43. Resnitzky D., Yarden A., Zipori D., Kimchi A. 1986; Autocrine β-related interferon controls c-myc suppression and growth arrest during hematopoietic cell differentiation. Cell 46:31–40
    [Google Scholar]
  44. Russell P. H. 1984; Newcastle disease virus: the effect of monoclonal antibody in the overlay on virus penetration and the immunoselection of variants. Journal of General Virology 65:795–798
    [Google Scholar]
  45. Stanley E. R., Guilbert L. J. 1981; Methods for the purification, assay, characterization and target cell binding of a colony stimulating factor (CSF-1). Journal of Immunological Methods 42:253–284
    [Google Scholar]
  46. Stark G. R., Brown R. E., Kerr I. M. 1981; Assay of (2′-5′)-oligoadenylic acid synthetase levels in cells and tissues: a convenient poly (I)-poly (C) paper-bound enzyme assay. Methods in Enzymology 79:194–199
    [Google Scholar]
  47. Tushinski R. J., Oliver I. T., Guilbert L. J., Tynan P. W., Warner J. R., Stanley E. R. 1982; Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy. Cell 28:71–81
    [Google Scholar]
  48. Van Heuvel M., Bosveld I. J., Mooren A. T. A., Trapman J., Zwarthoff E. C. 1986; Properties of natural and hybrid murine alpha interferons. Journal of General Virology 67:2215–2222
    [Google Scholar]
  49. Warren M. K., Ralph P. 1986; Macrophage growth factor CSF-1 stimulates human monocyte production of interferon, tumor necrosis factor and colony stimulating activity. Journal of Immunology 137:2281–2285
    [Google Scholar]
  50. Yamamoto Y. 1981; Antigenicity of mouse interferons: two distinct molecular species common to interferons of various sources. Virology 111:312–319
    [Google Scholar]
  51. Zawatzky R., Gresser I., Demaeyer E., Kirchner H. 1982c; The role of interferon in the resistance of C57BL/6 mice to various doses of herpes simplex virus type 1. Journal of Infectious Diseases 146:405–410
    [Google Scholar]
  52. Zawatzky R., Kirchner H., Demaeyer-Guignard J., Demaeyer E. 1982b; An X-linked locus influences the amount of circulating interferon induced in the mouse by herpes simplex virus type 1. Journal of General Virology 63:325–332
    [Google Scholar]
  53. Zawatzky R., De Maeyer E., Demaeyer-Guignard J. 1985; Identification of individual interferon-producing cells by in situ hybridization. Proceedings of the National Academy of SciencesU.S.A 821136–1140
    [Google Scholar]
  54. Zawatzky R., Brehm G., Rentrop M. 1986; Detection of interferon (IFN) mRNA in individual mouse macrophages by in situ hybridization. Abstract. Journal of Interferon Research 1:87
    [Google Scholar]
  55. Zwarthoff E. C., Mooren A. T. A., Trapman J. 1985; Organization, structure and expression of murine interferon alpha genes. Nucleic Acids Research 13:791–804
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-3-575
Loading
/content/journal/jgv/10.1099/0022-1317-70-3-575
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error