Expression in of Seven DNA Fragments Comprising the Complete L1 and L2 Open Reading Frames of Human Papillomavirus Type 6b and Localization of the ‘Common Antigen’ Region Free

Abstract

SUMMARY

Molecular cloning was used to express human papillomavirus type 6b (HPV-6b) antigens in . Seven genomic DNA fragments of HPV-6b which together comprise the complete L1 and L2 open reading frames, known to code for capsid proteins, were cloned and expressed in as both -galactosidase and TrpE fusion proteins. Western blots of HPV-6b -galactosidase fusion proteins using ‘genus-specific’ antisera produced by immunization of rabbits with disrupted bovine papillomavirus type 1 (BPV-1) showed that polypeptides encoded by two DNA fragments from the mid portion of L1 of HPV-6b were cross-reactive. Only one of these two polypeptides reacted with antisera raised against disrupted HPV-1, directly demonstrating that this polypeptide contains the papillomavirus ‘common antigen’. The cross-reactive region was confirmed by reversing antigen and antibody. Polyclonal antisera were raised against the seven HPV-6b -galactosidase fusion proteins and tested against BPV-1 virion proteins on Western blots. Only antiserum against the mid portion of L1 of HPV-6b reacted with the BPV-1 major capsid protein. HPV-6b fusion proteins were also used to test human sera for antibodies reactive in Western blots. Serum samples from 38 patients with documented HPV-6 infections and from 22 presumably uninfected controls were tested. Antibodies were not detected in any of the sera to any of the seven fusion proteins. HPV-6b -galactosidase fusion proteins are antigenic and can be used on Western blots to localize immunologically reactive sub-regions of proteins by reacting protein fragments with antisera from immunized animals. However, alternative methods will be required to detect anti-HPV antibodies in human sera.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-3-543
1989-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/3/JV0700030543.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-3-543&mimeType=html&fmt=ahah

References

  1. Ahola H., Stenlund A., Moreno-Lopez J., Pettersson U. 1983; Sequence of bovine papillomavirus type 1 DNA - functional and evolutionary implications. Nucleic Acids Research 11:2639–2649
    [Google Scholar]
  2. Banks L., Matlashewski G., Pim D., Churcher M., Roberts C., Crawford L. 1987; Expression of human papillomavirus type 6 and type 16 capsid proteins in bacteria and their antigenic characterization. Journal of General Virology 68:3081–3089
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  4. Campo M. S., Moar M. M., Laird H. M., Jarrett W. F. H. 1981; Molecular heterogeneity and lesion site specificity of cutaneous bovine papillomaviruses. Virology 113:323–335
    [Google Scholar]
  5. Centers For Disease Control 1983; Condyloma acuminatum—United States. 1966–1981 Morbidity and Mortality Weekly Report 32:306
    [Google Scholar]
  6. Chen E. Y., Howley P. M., Levinson A. D., Seeburg P. H. 1982; The primary structure and genetic organization of the bovine papillomavirus type 1 genome. Nature, London 299:529–534
    [Google Scholar]
  7. Chuang T.-Y. 1987; Condylomata acuminata, an epidemiologic view. Journal of the American Academy of Dermatology 16:376–384
    [Google Scholar]
  8. Cole S. T., Streeck R. 1986; Genome organization of nucleotide sequence of human papillomavirus type 33, which is associated with cervical cancer. Journal of Virology 58:991–995
    [Google Scholar]
  9. Cowsert L. M., Lake P., Jenson A. B. 1987; Topographical and conformational epitopes of bovine papillomavirus type 1 defined by monoclonal antibodies. Journal of the National Cancer Institute 79:1053–1057
    [Google Scholar]
  10. Danos O., Giri I., Thierry F., Yaniv M. 1984; Papillomavirus genomes: sequences and consequences. Journal of Investigative Dermatology 83:7s–11s
    [Google Scholar]
  11. Dartmann K., Schwarz E., Gissmann L., Zur Hausen H. 1986; The nucleotide sequence and genome organization of human papillomavirus type II. Virology 151:124–130
    [Google Scholar]
  12. Dieckmann C. L., Tzagoloff A. 1985; Assembly of the mitochondrial membrane system. Journal of Biological Chemistry 260:1513–1520
    [Google Scholar]
  13. Doorbar J., Gallimore P. H. 1987; Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus la. Journal of Virology 61:2793–2799
    [Google Scholar]
  14. Favre M., Orth G., Croissant O., Orth G. 1975; Structural polypeptides of rabbit, bovine, and human papillomaviruses. Journal of Virology 15:1239–1247
    [Google Scholar]
  15. Firzlaff J. M., Hsia C.-N. L., Halbert C. P. H. L., Jenison S. A., Galloway D. A. 1987; Polyclonal antibodies to human papillomavirus Type-6b and Type-16 bacterially derived fusion proteins. In Cancer Cells 5Papillomaviruses105–113 Steinberg B. M., Brandsma J. L., Taichman L. B. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Gissmann L. G., Pfister G., Zur Hausen H. 1977; Human papillomaviruses (HPV): characterization of four different isolates. Virology 76:569–580
    [Google Scholar]
  17. Jenison S. A., Firzlaff J. M., Langenberg A., Galloway D. A. 1988; Identification of immunoreactive antigens of human papillomavirus type 6b by using Escherichia coli-expressed fusion proteins. Journal of Virology 62:2115–2123
    [Google Scholar]
  18. Jenson A. B., Rosenthal J. D., Olson C, Pass F., Lancaster W. D., Shah K. 1980; Immunologic relatedness of papillomaviruses from different species. Journal of the National Cancer Institute 64:495–500
    [Google Scholar]
  19. Jenson A. B., Kurman R. J., Lancaster W. D. 1985; Detection of papillomavirus common antigens in lesions of skin and mucosa. Clinical Dermatology 3:56–63
    [Google Scholar]
  20. Johnson D. A., Gautsch J. W., Sportsman J. R., Elder J. H. 1984; Improved technique utilizing non-fat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Analytical Techniques 1:3–8
    [Google Scholar]
  21. Kirby K. S. 1956; A new method for the isolation of ribonucleic acids from mammalian tissues. Biochemical Journal 64:405–408
    [Google Scholar]
  22. Kirchner H. 1986; Immunobiology of human papillomavirus infection. Progress in Medical Virology 33:1–41
    [Google Scholar]
  23. Komly C. A., Breitburd F., Croissant O., Streeck R. E. 1986; The L2 open reading frame of human papillomavirus type la encodes a minor structural protein carrying type-specific antigens. Journal of Virology 60:813–816
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 277:680–685
    [Google Scholar]
  25. Lancaster W. D. 1979; Physical maps of bovine papillomavirus type 1 and type 2 genomes. Journal of Virology 32:684–687
    [Google Scholar]
  26. Li C, Shah K. V., Seth A., Gilden R. V. 1987; Identification of the human papillomavirus type 6b L1 open reading frame protein in condylomas and corresponding antibodies in human sera. Journal of Virology 61:2684–2690
    [Google Scholar]
  27. Mason D. Y., Sammons R. 1978; Alkaline phosphatase and peroxidase for double immunoenzymatic labelling of cellular constituents. Journal of Clinical Pathology 31:453–460
    [Google Scholar]
  28. Meinke W., Melnke G. C. 1981; Isolation and characterization of the major capsid protein of bovine papilloma virus type 1. Journal of General Virology 52:15–24
    [Google Scholar]
  29. Nakai Y., Lancaster W. D., Lim L. Y., Jenson A. B. 1986; Monoclonal antibodies to genus- and type-specific papillomavirus structural antigens. Intervirology 25:30–37
    [Google Scholar]
  30. Orth G., Favre M. 1985; Human papillomaviruses: biochemical and biologic properties. Clinical Dermatology 3:56–63
    [Google Scholar]
  31. Orth G., Breitburd F., Favre M. 1978; Evidence for antigenic determinants shared by the structural polypeptides of (Shope) rabbit papillomavirus and human papillomavirus type 1. Virology 91:243–255
    [Google Scholar]
  32. Pass F., Maizel J. V. JR 1973; Wart associated antigens. II. Human immunity to viral structural proteins. Journal of Investigative Dermatology 60:307–311
    [Google Scholar]
  33. Pfister H. 1984; Biology and biochemistry of papillomavirus. Review of Physiology, Biochemistry and Pharmacology 99:111–181
    [Google Scholar]
  34. Pilacinski W. P., Glassman D. L., Krzyzek R. A., Sadowski P. L., Robbins A. K. 1984; Cloning and expression in E. coli of the bovine papillomavirus L1 and L2 open reading frames. Bio / Technology 2:356–360
    [Google Scholar]
  35. Potter H. L. JR, Meinke W. J. 1985; Nucleotide sequence of bovine papillomavirus type 2 late region. Journal of General Virology 66:187–193
    [Google Scholar]
  36. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  37. Roseto A., Pothier P., Guillemin M. C, Peries J., Breitburd F., Bonneaud N., Orth G. 1984; Monoclonal antibodies to the major capsid protein of human papillomavirus type 1. Journal of General Virology 65:1319–1324
    [Google Scholar]
  38. Schwarz E., Dürst M., Demankowski C, Lattermann O., Zech R., Wolfsperger E., Suhai S., Zur Hausen H. 1983; DNA sequence and genome organization of genital human papillomavirus type 6b. EMBO Journal 2:2341–2348
    [Google Scholar]
  39. Spradbrow P. B. 1987; Immune response to papillomavirus infection. Papillomaviruses and Human Disease334–370 Syrjanen K., Gissmann L., Koss L. G. Wien & New York: Springer-Verlag;
    [Google Scholar]
  40. Stanley K. S., Luzio J. P. 1984; Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO Journal 3:1429–1434
    [Google Scholar]
  41. Stoler M. H., Broker T. R. 1986; In situ hybridization detection of human papillomavirus DNAs and messenger RNAs in genital condylomas and cervical carcinoma. Human Pathology 17:1250–1258
    [Google Scholar]
  42. Thompson G. H., Roman A. 1987; Expression of human papillomavirus type 6 E1, E2, L1 and L2 open reading frames in Escherichia coli . Gene 56:289–295
    [Google Scholar]
  43. Tomita Y., Shirasawa H., Sekine H., Simizu B. 1987a; Expression of the human papillomavirus type 6b L2 open reading frame in Escherichia coli: L2-beta-galactosidase fusion proteins and their antigenic properties. Virology 158:8–14
    [Google Scholar]
  44. Tomita Y., Shirasawa H., Simizu B. 1987b; Expression of human papillomavirus types 6b and 16 L1 open reading frames in Escherichia coli: detection of a 56,000-dalton polypeptide containing genus-specific (common) antigens. Journal of Virology 61:2389–2394
    [Google Scholar]
  45. Vaitukaitis J. L. 1981; Production of antisera with small doses of immunogen: multiple intradermal injections. Methods in Enzymology 73:46–52
    [Google Scholar]
  46. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  47. Wilbur D. C, Reichman R. C., Stoler M. H. 1988; Detection of infection by human papillomavirus in genital condylomata. A comparison study using immunocytochemistry and in situ nucleic acid hybridization. American Journal of Clinical Pathology 89:505–510
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-3-543
Loading
/content/journal/jgv/10.1099/0022-1317-70-3-543
Loading

Data & Media loading...

Most cited Most Cited RSS feed