1887

Abstract

SUMMARY

Molecular cloning was used to express human papillomavirus type 6b (HPV-6b) antigens in . Seven genomic DNA fragments of HPV-6b which together comprise the complete L1 and L2 open reading frames, known to code for capsid proteins, were cloned and expressed in as both -galactosidase and TrpE fusion proteins. Western blots of HPV-6b -galactosidase fusion proteins using ‘genus-specific’ antisera produced by immunization of rabbits with disrupted bovine papillomavirus type 1 (BPV-1) showed that polypeptides encoded by two DNA fragments from the mid portion of L1 of HPV-6b were cross-reactive. Only one of these two polypeptides reacted with antisera raised against disrupted HPV-1, directly demonstrating that this polypeptide contains the papillomavirus ‘common antigen’. The cross-reactive region was confirmed by reversing antigen and antibody. Polyclonal antisera were raised against the seven HPV-6b -galactosidase fusion proteins and tested against BPV-1 virion proteins on Western blots. Only antiserum against the mid portion of L1 of HPV-6b reacted with the BPV-1 major capsid protein. HPV-6b fusion proteins were also used to test human sera for antibodies reactive in Western blots. Serum samples from 38 patients with documented HPV-6 infections and from 22 presumably uninfected controls were tested. Antibodies were not detected in any of the sera to any of the seven fusion proteins. HPV-6b -galactosidase fusion proteins are antigenic and can be used on Western blots to localize immunologically reactive sub-regions of proteins by reacting protein fragments with antisera from immunized animals. However, alternative methods will be required to detect anti-HPV antibodies in human sera.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-3-543
1989-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/3/JV0700030543.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-3-543&mimeType=html&fmt=ahah

References

  1. Ahola H., Stenlund A., Moreno-Lopez J., Pettersson U. 1983; Sequence of bovine papillomavirus type 1 DNA - functional and evolutionary implications. Nucleic Acids Research 11:2639–2649
    [Google Scholar]
  2. Banks L., Matlashewski G., Pim D., Churcher M., Roberts C., Crawford L. 1987; Expression of human papillomavirus type 6 and type 16 capsid proteins in bacteria and their antigenic characterization. Journal of General Virology 68:3081–3089
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  4. Campo M. S., Moar M. M., Laird H. M., Jarrett W. F. H. 1981; Molecular heterogeneity and lesion site specificity of cutaneous bovine papillomaviruses. Virology 113:323–335
    [Google Scholar]
  5. Centers For Disease Control 1983; Condyloma acuminatum—United States. 1966–1981 Morbidity and Mortality Weekly Report 32:306
    [Google Scholar]
  6. Chen E. Y., Howley P. M., Levinson A. D., Seeburg P. H. 1982; The primary structure and genetic organization of the bovine papillomavirus type 1 genome. Nature, London 299:529–534
    [Google Scholar]
  7. Chuang T.-Y. 1987; Condylomata acuminata, an epidemiologic view. Journal of the American Academy of Dermatology 16:376–384
    [Google Scholar]
  8. Cole S. T., Streeck R. 1986; Genome organization of nucleotide sequence of human papillomavirus type 33, which is associated with cervical cancer. Journal of Virology 58:991–995
    [Google Scholar]
  9. Cowsert L. M., Lake P., Jenson A. B. 1987; Topographical and conformational epitopes of bovine papillomavirus type 1 defined by monoclonal antibodies. Journal of the National Cancer Institute 79:1053–1057
    [Google Scholar]
  10. Danos O., Giri I., Thierry F., Yaniv M. 1984; Papillomavirus genomes: sequences and consequences. Journal of Investigative Dermatology 83:7s–11s
    [Google Scholar]
  11. Dartmann K., Schwarz E., Gissmann L., Zur Hausen H. 1986; The nucleotide sequence and genome organization of human papillomavirus type II. Virology 151:124–130
    [Google Scholar]
  12. Dieckmann C. L., Tzagoloff A. 1985; Assembly of the mitochondrial membrane system. Journal of Biological Chemistry 260:1513–1520
    [Google Scholar]
  13. Doorbar J., Gallimore P. H. 1987; Identification of proteins encoded by the L1 and L2 open reading frames of human papillomavirus la. Journal of Virology 61:2793–2799
    [Google Scholar]
  14. Favre M., Orth G., Croissant O., Orth G. 1975; Structural polypeptides of rabbit, bovine, and human papillomaviruses. Journal of Virology 15:1239–1247
    [Google Scholar]
  15. Firzlaff J. M., Hsia C.-N. L., Halbert C. P. H. L., Jenison S. A., Galloway D. A. 1987; Polyclonal antibodies to human papillomavirus Type-6b and Type-16 bacterially derived fusion proteins. In Cancer Cells 5Papillomaviruses105–113 Steinberg B. M., Brandsma J. L., Taichman L. B. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  16. Gissmann L. G., Pfister G., Zur Hausen H. 1977; Human papillomaviruses (HPV): characterization of four different isolates. Virology 76:569–580
    [Google Scholar]
  17. Jenison S. A., Firzlaff J. M., Langenberg A., Galloway D. A. 1988; Identification of immunoreactive antigens of human papillomavirus type 6b by using Escherichia coli-expressed fusion proteins. Journal of Virology 62:2115–2123
    [Google Scholar]
  18. Jenson A. B., Rosenthal J. D., Olson C, Pass F., Lancaster W. D., Shah K. 1980; Immunologic relatedness of papillomaviruses from different species. Journal of the National Cancer Institute 64:495–500
    [Google Scholar]
  19. Jenson A. B., Kurman R. J., Lancaster W. D. 1985; Detection of papillomavirus common antigens in lesions of skin and mucosa. Clinical Dermatology 3:56–63
    [Google Scholar]
  20. Johnson D. A., Gautsch J. W., Sportsman J. R., Elder J. H. 1984; Improved technique utilizing non-fat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Analytical Techniques 1:3–8
    [Google Scholar]
  21. Kirby K. S. 1956; A new method for the isolation of ribonucleic acids from mammalian tissues. Biochemical Journal 64:405–408
    [Google Scholar]
  22. Kirchner H. 1986; Immunobiology of human papillomavirus infection. Progress in Medical Virology 33:1–41
    [Google Scholar]
  23. Komly C. A., Breitburd F., Croissant O., Streeck R. E. 1986; The L2 open reading frame of human papillomavirus type la encodes a minor structural protein carrying type-specific antigens. Journal of Virology 60:813–816
    [Google Scholar]
  24. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 277:680–685
    [Google Scholar]
  25. Lancaster W. D. 1979; Physical maps of bovine papillomavirus type 1 and type 2 genomes. Journal of Virology 32:684–687
    [Google Scholar]
  26. Li C, Shah K. V., Seth A., Gilden R. V. 1987; Identification of the human papillomavirus type 6b L1 open reading frame protein in condylomas and corresponding antibodies in human sera. Journal of Virology 61:2684–2690
    [Google Scholar]
  27. Mason D. Y., Sammons R. 1978; Alkaline phosphatase and peroxidase for double immunoenzymatic labelling of cellular constituents. Journal of Clinical Pathology 31:453–460
    [Google Scholar]
  28. Meinke W., Melnke G. C. 1981; Isolation and characterization of the major capsid protein of bovine papilloma virus type 1. Journal of General Virology 52:15–24
    [Google Scholar]
  29. Nakai Y., Lancaster W. D., Lim L. Y., Jenson A. B. 1986; Monoclonal antibodies to genus- and type-specific papillomavirus structural antigens. Intervirology 25:30–37
    [Google Scholar]
  30. Orth G., Favre M. 1985; Human papillomaviruses: biochemical and biologic properties. Clinical Dermatology 3:56–63
    [Google Scholar]
  31. Orth G., Breitburd F., Favre M. 1978; Evidence for antigenic determinants shared by the structural polypeptides of (Shope) rabbit papillomavirus and human papillomavirus type 1. Virology 91:243–255
    [Google Scholar]
  32. Pass F., Maizel J. V. JR 1973; Wart associated antigens. II. Human immunity to viral structural proteins. Journal of Investigative Dermatology 60:307–311
    [Google Scholar]
  33. Pfister H. 1984; Biology and biochemistry of papillomavirus. Review of Physiology, Biochemistry and Pharmacology 99:111–181
    [Google Scholar]
  34. Pilacinski W. P., Glassman D. L., Krzyzek R. A., Sadowski P. L., Robbins A. K. 1984; Cloning and expression in E. coli of the bovine papillomavirus L1 and L2 open reading frames. Bio / Technology 2:356–360
    [Google Scholar]
  35. Potter H. L. JR, Meinke W. J. 1985; Nucleotide sequence of bovine papillomavirus type 2 late region. Journal of General Virology 66:187–193
    [Google Scholar]
  36. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  37. Roseto A., Pothier P., Guillemin M. C, Peries J., Breitburd F., Bonneaud N., Orth G. 1984; Monoclonal antibodies to the major capsid protein of human papillomavirus type 1. Journal of General Virology 65:1319–1324
    [Google Scholar]
  38. Schwarz E., Dürst M., Demankowski C, Lattermann O., Zech R., Wolfsperger E., Suhai S., Zur Hausen H. 1983; DNA sequence and genome organization of genital human papillomavirus type 6b. EMBO Journal 2:2341–2348
    [Google Scholar]
  39. Spradbrow P. B. 1987; Immune response to papillomavirus infection. Papillomaviruses and Human Disease334–370 Syrjanen K., Gissmann L., Koss L. G. Wien & New York: Springer-Verlag;
    [Google Scholar]
  40. Stanley K. S., Luzio J. P. 1984; Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO Journal 3:1429–1434
    [Google Scholar]
  41. Stoler M. H., Broker T. R. 1986; In situ hybridization detection of human papillomavirus DNAs and messenger RNAs in genital condylomas and cervical carcinoma. Human Pathology 17:1250–1258
    [Google Scholar]
  42. Thompson G. H., Roman A. 1987; Expression of human papillomavirus type 6 E1, E2, L1 and L2 open reading frames in Escherichia coli . Gene 56:289–295
    [Google Scholar]
  43. Tomita Y., Shirasawa H., Sekine H., Simizu B. 1987a; Expression of the human papillomavirus type 6b L2 open reading frame in Escherichia coli: L2-beta-galactosidase fusion proteins and their antigenic properties. Virology 158:8–14
    [Google Scholar]
  44. Tomita Y., Shirasawa H., Simizu B. 1987b; Expression of human papillomavirus types 6b and 16 L1 open reading frames in Escherichia coli: detection of a 56,000-dalton polypeptide containing genus-specific (common) antigens. Journal of Virology 61:2389–2394
    [Google Scholar]
  45. Vaitukaitis J. L. 1981; Production of antisera with small doses of immunogen: multiple intradermal injections. Methods in Enzymology 73:46–52
    [Google Scholar]
  46. Vieira J., Messing J. 1982; The pUC plasmids, an M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19:259–268
    [Google Scholar]
  47. Wilbur D. C, Reichman R. C., Stoler M. H. 1988; Detection of infection by human papillomavirus in genital condylomata. A comparison study using immunocytochemistry and in situ nucleic acid hybridization. American Journal of Clinical Pathology 89:505–510
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-3-543
Loading
/content/journal/jgv/10.1099/0022-1317-70-3-543
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error