1887

Abstract

SUMMARY

The complete nucleotide sequence (2217 residues) of RNA 3 of cucumber mosaic virus strain O (CMV-O) was determined. Two open reading frames were identified, encoding a 3A protein (279 amino acid residues) in the 5′-proximal region and a coat protein (218 amino acid residues). The amino acid sequence of the coat protein C terminus was determined directly from purified protein, and confirmed the presence of the coat protein open reading frame in CMV-O RNA 3. Comparison of nucleotide sequences and amino acid sequences of CMV strains O, Q, D and Y indicated the close relationship between these strains. A tRNA-like structure could be adopted by the 3′ non-coding region, and this resembled a similar structure in CMV-Q in spite of nucleotide substitutions or deletions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-2-499
1989-02-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/2/JV0700020499.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-2-499&mimeType=html&fmt=ahah

References

  1. Bujarski J. J., Ahlquist P., Hall T. C., Dreher T. W., Kaesberg P. 1986; Modulation of replication, aminoacylation and adenylation in vitro and infectivity in vivo of BMV RNAs containing deletions within the multifunctional 3′ end. EMBO Journal 5:1769–1774
    [Google Scholar]
  2. Cuozzo M., O’Connell K. M., Kaniewski W., Fang R. X., Chua N. H., Tumer N. E. 1988; Viral protection in transgenic plants expressing the cucumber mosaic virus coat protein or its antisense RNA. Bio/Technology 6:549–557
    [Google Scholar]
  3. Davies C., Symons R. H. 1988; Further implications for the evolutionary relationships between tripartite plant viruses based on cucumber mosaic virus RNA 3. Virology 165:216–224
    [Google Scholar]
  4. Geliebter J., Zefe R. A., Melvold R. W., Nathenson S. G. 1986; Mitotic recombination in germ cells generated two major histocompatibility complex mutant genes shown to be identical by RNA sequence analysis: Kbm9 and Kbm6. Proceedings of the National Academy of SciencesU.S.A 833371–3375
    [Google Scholar]
  5. Gould A. R., Symons R. H. 1982; Cucumber mosaic virus RNA 3: determination of the nucleotide sequence provides the amino acid sequences of protein 3A and viral coat protein. European Journal of Biochemistry 126:217–226
    [Google Scholar]
  6. Gubler U., Hoffman B. I. 1983; A simple and very efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  7. Hanahan D. 1985; Techniques for transformation of E. coli. In DNA Cloning 1109–135 Glover D. M. Oxford: IRL Press;
    [Google Scholar]
  8. Hayashi R., Moore S., Stein W. H. 1973; Carboxypeptidase from yeast: large scale preparation and the application to COOH-terminal analysis of peptidase and proteins. Journal of Biological Chemistry 248:2296–2302
    [Google Scholar]
  9. Hidaka S., Tsunasawa S., Yoon I., Narita K., Takanami Y., Kubo S., Miura K. 1985; Messenger RNA structure participating in the initiation of synthesis of cucumber mosaic virus coat protein. Journal of Biochemistry (Japan) 97:161–171
    [Google Scholar]
  10. Kaper J. M., Waterworth H. E. 1977; Cucumber mosaic virus associated RNA 5: causal agent for tomato necrosis. Science 196:429–431
    [Google Scholar]
  11. Kaper I. M., Waterworth H. E. 1981; Cucumoviruses. In Handbook of Plant Virus Infections and Comparative Diagnosis257–332 Kurstak E. Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  12. Kaper J. M., Tousignant M. E., Steen M. T. 1988; Cucumber mosaic virus-associated RNA 5. XI. Comparison of 14 CARNA 5 variants relates ability to induce tomato necrosis to a conserved nucleotide sequence. Virology 163:284–292
    [Google Scholar]
  13. Kohl R. J., Hall T. C. 1974; Aminoacylation of RNA from several viruses: amino acid specificity and differential activity of plant, yeast and bacterial synthetases. Journal of General Virology 25:257–261
    [Google Scholar]
  14. Masaki T., Fujihashi T., Nakamura K., Soejima M. 1981; Studies on a new proteolytic enzyme from Achromobacter lyticus M497-1. II. Specificity and inhibition studies of Achromobacter protease I. Biochimica et biophysica acta 660:51–55
    [Google Scholar]
  15. Meshi T., Watanabe Y., Saito T., Sugimoto A., Maeda T., Okada Y. 1987; Function of the 30 kd protein of tobacco mosaic virus: involvement in cell-to-cell movement and dispensability for replication. EMBO Journal 6:2557–2563
    [Google Scholar]
  16. Peattie D. A. 1979; Direct chemical method for sequencing RNA. Proceedings of the National Academy of SciencesU.S.A 761760–1764
    [Google Scholar]
  17. Rezaian M. A., Williams R. H. V., Gordon K. H. J., Gould A. R., Symons R. H. 1984; Nucleotide sequence of cucumber-mosaic-virus RNA 2 reveals a translation product significantly homologous to corresponding proteins of other viruses. European Journal of Biochemistry 143:277–284
    [Google Scholar]
  18. Rezaian M. A., Williams R. H. V., Symons R. H. 1985; Nucleotide sequence of cucumber mosaic virus RNA 1 : presence of a sequence complementary to part of the viral satellite RNA and homologies with other viral RNAs. European Journal of Biochemistry 150:331–339
    [Google Scholar]
  19. Richards K. E., Ionard G., Jacquemond M., Lot H. 1978; Nucleotide sequence of cucumber mosaic virus-associated RNA 5. Virology 89:395–408
    [Google Scholar]
  20. Schwinghamer M. W., Symons R. H. 1977; Translation of the four major RNA species of cucumber mosaic virus in plant and animal cell free systems and in toad oocytes. Virology 79:88–108
    [Google Scholar]
  21. Silberklang M., Gillum A. M., Rajbhandary U. L. 1979; Use of in vitro 32P labeling in the sequence analysis of nonradioactive tRNAs. Methods in Enzymology 59:58–109
    [Google Scholar]
  22. Symons R. H. 1979; Extensive sequence homology at the 3′-termini of the four RNAs of cucumber mosaic virus. Nucleic Acids Research 7:825–837
    [Google Scholar]
  23. Takanami Y., Fraenkel-Conrat H. 1982; No viral gene is able to elicit RNA-dependent RNA polymerase in cucumber mosaic virus-infected cucumber cotyledons. Virology 116:372–374
    [Google Scholar]
  24. Takeishi K., Gotho O. 1982; Sequence relationships among various 4·5S RNA species. Journal of Biochemistry (Japan) 92:1173–1177
    [Google Scholar]
  25. Tinoco J. I., Borer P. N., Dengler B., Levine M. D., Uhlenbeck O. C., Crothers D. M., Gralla J. 1973; Improved estimation of secondary structure in ribonucleic acids. Nature New Biology 246:40–41
    [Google Scholar]
  26. Yamaguchi K., Hidaka S., Miura K. 1982; Relationship between structure of the 5′ noncoding region of viral mRNA and efficiency in the initiation step of protein synthesis in a eukaryotic system. Proceedings of the National Academy of SciencesU.S.A 791012–1016
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-2-499
Loading
/content/journal/jgv/10.1099/0022-1317-70-2-499
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error