1887

Abstract

SUMMARY

A gene in equine herpesvirus 1 (EHV-1 ; equine abortion virus) equivalent to the gB glycoprotein gene of herpes simplex virus (HSV) has been identified by DNA hybridization and nucleotide sequencing. A 4·3 kbp EHV-1 I-I sequence (0·40 to 0·43 map units) contained an open reading frame flanked by appropriate control elements and was capable of encoding a polypeptide of 980 amino acids. This had 50 to 60 % identity over a 617 amino acid conserved region with the gB gene products of HSV and three other alphaherpesviruses, and 20 to 30% identity with those of human cytomegalovirus and Epstein–Barr virus. Analysis of the amino acid sequence predicts a long signal peptide, hydrophobic and hydrophilic domains and -glycosylation sites, and has identified a probable internal proteolytic cleavage site. The EHV-1 gB open reading frame appears to be overlapped at its 5′ end by 135 nucleotides of the 3′ end of an upstream open reading frame the potential translation product of which has approximately 50% identity with HSV gene ICP 18·5 and VZV gene 30 products.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-2-383
1989-02-01
2022-07-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/2/JV0700020383.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-2-383&mimeType=html&fmt=ahah

References

  1. Allen G. P. , Bryans J. T. 1986; Molecular epizootiology, pathogenesis, and prophylaxis of equine herpesvirus-1 infections. Progress in Veterinary Microbiology and Immunology 2:78–144
    [Google Scholar]
  2. Allen G. P., Yeargan M. R. 1987; Use of λgt11 and monoclonal antibodies to map the genes for the six major glycoproteins of equine herpesvirus 1. Journal of Virology 61:2454–2461
    [Google Scholar]
  3. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  4. Bause E. 1983; Structural requirements of N-glycosylation of proteins. Biochemical Journal 209:331–336
    [Google Scholar]
  5. Blacklaws B. A., Nash A. A., Darby G. 1987; Specificity of the immune response of mice to herpes simplex virus glycoproteins B and D constitutively expressed on L cell lines. Journal of General Virology 68:1103–1114
    [Google Scholar]
  6. Breen E. J., Browne L. H., Glue L., Williams K. L. 1988; The DNA rodent: a portable hand held DNA sequence reader. Computer Applications in the Biosciences 4:217
    [Google Scholar]
  7. Bzik D. J., Fox B. A., Deluca N. A., Person S. 1984; Nucleotide sequence specifying the glycoprotein gene, gB, of herpes simplex virus type 1. Virology 133:301–314
    [Google Scholar]
  8. Bzik D. J., Debroy C, Fox B. A., Pederson N. E., Person S. 1986; The nucleotide sequence of the gB glycoprotein gene of HSV-2 and comparison with the corresponding gene of HSV-1. Virology 155:322–333
    [Google Scholar]
  9. Campbell T. M., Studdert M. J. 1983; Equine herpesvirus type-1 (EHV-1). Veterinary Bulletin 53:135–146
    [Google Scholar]
  10. Chan W. L., Lukig M. L., Liew F. Y. 1985; Helper T cells induced by an immunopurified herpes simplex virus type 1 (HSV-1) 115 kilodalton glycoprotein (gB) protect mice against HSV-1 infection. Journal of Experimental Medicine 162:1304–1318
    [Google Scholar]
  11. Chou P. Y., Fasman G. D. 1978; Prediction of the secondary structure of proteins from their amino acid sequence. Annual Review of Biochemistry 47:45–148
    [Google Scholar]
  12. Claesson-Welsh L., Spear P. G. 1987; Amino-terminal sequence, synthesis, and membrane insertion of glycoprotein B of herpes simplex virus type 1. Journal of Virology 61:1–7
    [Google Scholar]
  13. Courtney R. J. 1984; Virus-specific components of herpes simplex virus involved in the immune response. In Immunobiology of Herpes Simplex Virus Infection33–44 Rouse B., Lopez C. Boca Raton: CRC Press;
    [Google Scholar]
  14. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E., Minson A. C., Smith G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3063
    [Google Scholar]
  15. Dale R. M. K., Mcclure B. A., Houchins J. P. 1985; A rapid single-stranded cloning strategy for producing a series of overlapping clones for use in DNA sequencing. Plasmid 13:31–40
    [Google Scholar]
  16. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  17. Davison A. J., Wilkie N. M. 1983; Location and orientation of homologous sequences in the genomes of five herpesviruses. Journal of General Virology 64:1927–1942
    [Google Scholar]
  18. Deluca N., Bzik D. J., Bond V. C., Person S., Snipes W. 1982; Nucleotide sequences of herpes simplex virus type 1 (HSV-1) affecting virus entry, cell fusion, and production of glycoprotein gB (VP7). Virology 122:411–423
    [Google Scholar]
  19. Engleman D. M., Steitz T. A., Goldman A. 1986; Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins. Annual Review of Biophysical Chemistry 15:321–353
    [Google Scholar]
  20. Fristensky B., Lis J., Wu R. 1982; Portable microcomputer software for nucleotide sequence analysis. Nucleic Acids Research 10:6451–6463
    [Google Scholar]
  21. Gibbs A., Fenner F. 1984; Methods for comparing sequence data such as restriction endonuclease maps or nucleotide sequences of viral nucleic acid molecules. Journal of Virological Methods 9:317–324
    [Google Scholar]
  22. Glorioso J., Schröder C. H., Kumel G., Szcesiul M., Levine M. 1984; Immunogenicity of herpes simplex virus glycoproteins gC and gB and their role in protective immunity. Journal of Virology 50:805–812
    [Google Scholar]
  23. Gompels U. A., Craxton M. A., Honess R. W. 1988; Conservation of gene organization in the lymphotrophic herpesviruses saimiri and Epstein-Barr virus. Journal of Virology 62:757–767
    [Google Scholar]
  24. Gong M., Ooka T., Matsuo T., Kieff E. 1987; Epstein–Barr virus glycoprotein homologous to herpes simplex virus gB. Journal of Virology 61:499–508
    [Google Scholar]
  25. Goodheart C. R., Plummer G. 1975; The densities of herpesviral DNAs. Progress in Medical Virology 19:324–352
    [Google Scholar]
  26. Henry B. E., Robinson R. A., Dauenhauer S. A., Atherton S. S., Hayward G. S., O’callaghan D. J. 1981; Structure of the genome of equine herpesvirus type 1. Virology 115:97–114
    [Google Scholar]
  27. Holland L. E., Sandri-Goldin R. M., Goldin A. L., Glorioso J. C., Levine M. 1984; Transcriptional and genetic analyses of the herpes simplex virus type 1 genome : coordinates 0·29 to 0·45. Journal of Virology 49:947–959
    [Google Scholar]
  28. Keller P. M., Davison A. J., Lowe R. S., Bennet C. D., Ellis R. W. 1986; Identification and structure of the gene encoding gpII, a major glycoprotein of varicella-zoster virus. Virology 152:181–191
    [Google Scholar]
  29. Kozak M. 1987; At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. Journal of Molecular Biology 196:947–950
    [Google Scholar]
  30. Kyte J., Doolittle R. F. 1982; A simple method for displaying the hydropathic character of a protein. Journal of Molecular Biology 157:105–132
    [Google Scholar]
  31. Mcgeoch D. J. 1985; On the predictive recognition of signal peptide sequences. Virus Research 3:271–286
    [Google Scholar]
  32. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual92–94 New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  33. Montalvo E. A., Grose C. 1987; Assembly and processing of the disulfide-linked varicella-zoster virus glycoprotein gpII(140). Journal of Virology 61:2877–2884
    [Google Scholar]
  34. Novotny J., Auffray C. 1984; A program for prediction of protein secondary structure from sequence data: application to histocompatibility antigens. Nucleic Acids Research 12:243–255
    [Google Scholar]
  35. O’callaghan D. J., Gentry G. A., Randall C. C. 1983; The equine herpesviruses. In The Herpesviruses 2215–318 Roizman B. New York: Plenum Press;
    [Google Scholar]
  36. Pachl C, Burke R. L., Stuve L., Sanchez-Pescador L., Van Nest G., Masiarz F., Dina D. 1987; Expression of cell-associated and secreted forms of herpes simplex virus type 1 glycoprotein B in mammalian cells. Journal of Virology 61:315–325
    [Google Scholar]
  37. Pellett P. E., Biggin M. D., Barrell B., Roizman B. 1985a; Epstein-Barr virus genome may encode a protein showing significant amino acid and predicted secondary structure homology with glycoprotein B of herpes simplex virus 1. Journal of Virology 56:807–813
    [Google Scholar]
  38. Pellett P. E., Kousoulas K. G., Pereira L., Roizman B. 1985b; Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene : primary sequence and predicted protein structure of the wild type and of monoclonal antibody-resistant mutants. Journal of Virology 53:243–253
    [Google Scholar]
  39. Pellett P. E., Jenkins F. J., Ackermann M., Sarmiento M., Roizman B. 1986; Transcription initiation sites and nucleotide sequence of a herpes simplex virus 1 gene conserved in Epstein-Barr virus genome and reported to affect the transport of viral glycoproteins. Journal of Virology 60:1134–1140
    [Google Scholar]
  40. Perlman D., Halvorson H. O. 1983; A putative signal peptidase recognition site and sequence in eucaryotic and procaryotic signal peptides. Journal of Molecular Biology 167:391–409
    [Google Scholar]
  41. Reisner A. H., Bucholtz C. A. 1986; The MTX package of computer programs for the comparison of sequences of nucleotides and amino acid residues. Nucleic Acids Research 14:233–238
    [Google Scholar]
  42. Robertson G. R., Whalley J. M. 1985; Molecular cloning and physical mapping of the equine herpesvirus 1 genome. In Viruses of Veterinary Importance in South East Asia and the Western Pacific471–472 Della Porta A. J. Sydney: Academic Press;
    [Google Scholar]
  43. Robbins A. K., Dorney D. J., Wathen M. W., Whealy M. E., Gold C., Watson R. I., Holland L. E., Weed S. D., Levine M., Glorioso J. C., Enquist L. W. 1987; The pseudorabies virus gli gene is closely related to the gB glycoprotein gene of herpes simplex virus. Journal of Virology 61:2691–2701
    [Google Scholar]
  44. Sabine M., Feilen C, Herbert L., Jones R., Lomas S., Love D., Wild J. 1983; Equine herpesvirus abortion in Australia (1977–1982). Equine Veterinary Journal 15:366–370
    [Google Scholar]
  45. Snowden B. W., Halliburton I. W. 1985; Identification of cross-reacting glycoproteins of four herpesviruses by Western blotting. Journal of General Virology 66:2039–2044
    [Google Scholar]
  46. Snowden B. W., Kinchington P. R., Powell K. L., Halliburton I. W. 1985; Antigenic and biochemical analysis of gB of herpes simplex virus type 1 and type 2 and of cross-reacting glycoproteins induced by bovine mammillitis virus and equine herpesvirus type 1. Journal of General Virology 66:231–247
    [Google Scholar]
  47. Spear P. G. 1985; Glycoproteins specified by herpes simplex viruses. In The Herpesviruses 3315–356 Roizman B. New York: Plenum Press;
    [Google Scholar]
  48. Staden R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  49. Staden R. 1984; Measurements of the effects that coding for a protein has on DNA sequence and their use for finding genes. Nucleic Acids Research 12:551–567
    [Google Scholar]
  50. Stannard L. M., Fuller A. O., Spear P. G. 1987; Herpes simplex virus glycoproteins associated with different morphological entities projecting from the virion envelope. Journal of General Virology 68:715–725
    [Google Scholar]
  51. Turtinen L. W., Allen G. P. 1982; Identification of the envelope surface glycoproteins of equine herpesvirus type 1. Journal of General Virology 63:481–485
    [Google Scholar]
  52. Von Heijne G. 1984; How signal sequences maintain cleavage specificity. Journal of Molecular Biology 173:243–251
    [Google Scholar]
  53. Whalley J. M., Robertson G. R., Davison A. J. 1981; analysis of the genome of equine herpesvirus type 1 : arrangement of cleavage sites for restriction endonucleases EcoRI, BglII and BamHI. Journal of General Virology 57:307–323
    [Google Scholar]
  54. Zarling J. M., Moran P. A., Burke R. L., Pachl C., Berman P. W., Laskey L. L. 1986; Human Cytotoxic T Cell clones directed against herpes simplex virus infected cells. IV. Recognition and activation by cloned glycoproteins gB and gD. Journal of Immunology 136:4669–4673
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-2-383
Loading
/content/journal/jgv/10.1099/0022-1317-70-2-383
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error