1887

Abstract

SUMMARY

Cauliflower mosaic virus (CaMV) is a DNA plant virus that replicates its genome through an RNA intermediate. The cytoplasmic step of CaMV DNA replication was studied using a fraction consisting of purified viroplasms, which are virus-specific inclusion bodies accumulating in the infected plant cells. The isolated viroplasms retain a DNA polymerase activity able to synthesize CaMV DNA from endogenous templates. A further characterization of the viral DNA sequences produced in the isolated inclusion bodies indicates that newly synthesized DNA, mostly of polarity opposite to that of viral RNA, is single-stranded and partly associated with RNA by base-pairing. In addition to an RNA-dependent DNA polymerase activity, RNA molecules, which presumably originate from the viral RNA template used for reverse transcription, are found to accumulate in the purified inclusion bodies. Furthermore, a small DNA molecule strongly labelled in the purified fraction has been characterized and corresponds to the CaMV reverse transcription intermediate sa-DNA. These results provide further evidence that the reverse transcription of CaMV RNA occurs in the viroplasms. Additional data are presented which suggest that CaMV replication could occur in virion-related particles.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-12-3439
1989-12-01
2022-08-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/12/JV0700123439.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-12-3439&mimeType=html&fmt=ahah

References

  1. Ansa O. A., Bower J. W., Shepherd R. J. 1982; Evidence for replication of cauliflower mosaic virus in plant nuclei. Virology 121:147–156
    [Google Scholar]
  2. Bailey J. M., Davidson N. 1975; Methylmercury as a reversible denaturing agent for agarose gel electrophoresis. Analytical Biochemistry 70:75–85
    [Google Scholar]
  3. Bollum F. I. 1975; Mammalian DNA polymerases. Progress in Nucleic Acid Research and Molecular Biology 15:109–144
    [Google Scholar]
  4. Bonneville J. M., Volovitch M., Modjtahedi N., Yot P. 1984; In vitro synthesis of cauliflower mosaic virus DNA in viroplasms. In Proteins Involved in DNA Replication113–119 Hubsher U., Spadari S. New York & London: Plenum Press;
    [Google Scholar]
  5. Bonneville J. M., Fuetterer J., Gordon K., Hohn T., Martinez-Izquierdo J., Pfeiffer P., Pietrzak M. 1987; The replication cycle of cauliflower mosaic virus in relation to other retroid elements, current perspectives. In Molecular Strategies for Crop Protection267–293 Arntzen C. J., Ryan C. New York: Alan R. Liss;
    [Google Scholar]
  6. Chouikh Y., Volovitch M., Yot P. 1979; A simple and fast electrophoretic method for elution of nucleic acids from gels. Molecular Biology Reports 5:237–239
    [Google Scholar]
  7. Clewell D. B. 1972; Nature of ColE 1 plasmid replication in Escherichia coli in the presence of chloramphenicol. Journal of Bacteriology 110:667–676
    [Google Scholar]
  8. Conti G. E., Vegetti G., Bassi M., Favali M. 1972; Some ultrastructural and cytochemical observations on Chinese cabbage leaves infected with cauliflower mosaic virus. Virology 47:694–700
    [Google Scholar]
  9. Covey S. N. 1986; Amino acid sequence homology in gag region of reverse transcribing elements and the coat protein gene of cauliflower mosaic virus. Nucleic Acids Research 14:623–633
    [Google Scholar]
  10. Covey S. N., Hull R. 1981; Transcription of cauliflower mosaic virus DNA. Detection of transcripts, properties, and location of the gene encoding the viral inclusion body protein. Virology 111:463–474
    [Google Scholar]
  11. Covey S. N., Turner D., Mulder G. 1983; A small DNA molecule containing covalently linked ribonucleotides originates from the large intergenic region of the cauliflower mosaic virus genome. Nucleic Acids Research 11:251–264
    [Google Scholar]
  12. Dixon L. K., Hohn T. 1984; Initiation of translation of the cauliflower mosaic virus genome from a polycistronic mRNA: evidence from deletion mutagenesis. EMBO Journal 3:2731–2736
    [Google Scholar]
  13. Dormont D., Spire B., Barre-Sinoussi F., Montagnier L., Chermann J. C. 1985; Inhibition of RNA-dependent DNA polymerases of AIDS and SAIDS retroviruses by HPA-23 (ammonium-21-tungsto-9- antimoniate). Annales de l’Institut Pasteur 136E:75–83
    [Google Scholar]
  14. Favali M. A., Bassi M., Conti G. G. 1973; A quantitative autoradiographic study of intracellular sites for replication of cauliflower mosaic virus. Virology 53:115–119
    [Google Scholar]
  15. Fuetterer J., Hohn T. 1987; Involvement of nucleocapsids in reverse transcription: a general phenomenon?. Trends in Biochemical Sciences 12:92–95
    [Google Scholar]
  16. Gardner R. C., Howarth A. J., Hahn P., Brown-Luedi M., Shepherd R. J., Messing J. 1981; The complete nucleotide sequence of an infectious clone of cauliflower mosaic virus by M13mp7 shotgun sequencing. Nucleic Acids Research 9:2871–2887
    [Google Scholar]
  17. Goldbach R. W., Borst P., Bollen-De Boer J. E., Van Bruggen E. F. J. 1978; The organization of ribosomal RNA genes in the mitochondrial DNA of Tetrahymena pyriformis strain st. Biochimica et biophysica acta 521:169–186
    [Google Scholar]
  18. Gronenborn B. 1987; The molecular biology of cauliflower mosaic virus and its application as plant gene vector. In Plant DNA Infectious Agents1–29 Hohn T., Schell J. Wien & New York: Springer-Verlag;
    [Google Scholar]
  19. Guilfoyle T. J. 1987; Retrolike viruses in plants. In Plant-Microbe Interactions. Molecular and Genetic Perspectives327–358 Kosuge T., Nester E. W. New York & London: Macmillan Publishing;
    [Google Scholar]
  20. Guilfoyle T., Olszewsky N., Hagen G., Kutj A., McClure B. 1983; Transcription and replication of the cauliflower mosaic virus genome : studies with isolated nuclei, nuclear lysates, and extranuclear cell-free leaf extracts. In Plant Molecular Biology117–136 Goldberg R. B. New York: Alan R. Liss;
    [Google Scholar]
  21. Guilley H., Richards K. E., Jonard G. 1983; Observations concerning the discontinuous DNAs of cauliflower mosaic virus. EMBO Journal 2:277–282
    [Google Scholar]
  22. Howarth A. J., Gardner R. C., Messing J., Shepherd R. J. 1981; Nucleotide sequence of naturally occurring deletion mutants of cauliflower mosaic virus. Virology 112:678–685
    [Google Scholar]
  23. Howell S. H., Walker L. L., Dudley R. K. 1980; Cloned cauliflower mosaic virus DNA infects turnip (Brassica rapa). Science 208:1265–1267
    [Google Scholar]
  24. Hull R., Covey S. N. 1983; Does cauliflower mosaic virus replicate by reverse transcription?. Trends in Biological Sciences 8:119–121
    [Google Scholar]
  25. Hull R., Shepherd R. J., Harvey J. D. 1976; Cauliflower mosaic virus: an improved purification procedure and some properties of the virus particles. Journal of General Virology 31:93–100
    [Google Scholar]
  26. Hull R., Covey S. N., Maule A. J. 1987; Structure and replication of caulimovirus genomes. Journal of Cell Science supplement 7:213–229
    [Google Scholar]
  27. Kamei T., Rubio-huertos M., Matsui C. 1969; Thymidine-H3 uptake by X-bodies associated with cauliflower mosaic virus. Virology 37:506–508
    [Google Scholar]
  28. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  29. Marsh L. E., Guilfoyle T. I. 1987; Cauliflower mosaic virus replication intermediates are encapsidated into virion-like particles. Virology 161:129–137
    [Google Scholar]
  30. Marsh L., Kuzj A., Guilfoyle T. 1985; Identification and characterization of cauliflower mosaic virus replication complexes-analogy to hepatitis B virus. Virology 143:212–223
    [Google Scholar]
  31. Mason W. S., Aldrich C., Summers J., Taylor J. M. 1982; Asymmetric synthesis of duck hepatitis B virus DNA in liver cells: free minus-strand DNA. Proceedings of the National Academy of SciencesU.S.A 79:3997–4001
    [Google Scholar]
  32. Maxwell I. H., Maxwell F., Hahn W. E. 1977; Removal of RNase activity from DNase by affinity chromatography on agarose-coupled aminophenylphosphoryl-uridine-2′(3′)-phosphate. Nucleic Acids Research 4:241–246
    [Google Scholar]
  33. Mazzolini L., Bonneville J. M., Volovitch M., Magazin M., Yot P. 1985; Strand-specific viral DNA synthesis in purified viroplasms isolated from turnip leaves infected with cauliflower mosaic virus. Virology 145:293–303
    [Google Scholar]
  34. Menissier J., De Murcia G., Lebeurier G., Hirth L. 1983; Electron microscopic studies of the different topological forms of the cauliflower mosaic virus DNA: knotted encapsidated DNA and nuclear minichromosome. EMBO Journal 2:1067–1071
    [Google Scholar]
  35. Menissier J., Laquel P., Lebeurier G., Hirth L. 1984; A DNA polymerase activity is associated with cauliflower mosaic virus. Nucleic Acids Research 12:8769–8778
    [Google Scholar]
  36. Meric C., Spahr P. F. 1986; Rous sarcoma virus nucleic acid binding protein p12 is necessary for viral 70S RNA dimer formation and packaging. Journal of Virology 60:450–459
    [Google Scholar]
  37. Miller R. H., Tran C., Robinson W. S. 1984; Hepatitis B virus particles of plasma and liver contain viral DNA-RNA hybrid molecules. Virology 139:53–63
    [Google Scholar]
  38. Modjtahedi N., Volovitch M., Sossountzov L., Habricot Y., Bonneville J. M., Yot P. 1984; Cauliflower mosaic virus-induced viroplasms support viral DNA synthesis in a cell-free system. Virology 133:289–300
    [Google Scholar]
  39. Olszewski N., Hagen G., Guilfoyle T. J. 1982; A transcriptionally active, covalently closed minichromosome of cauliflower mosaic virus DNA isolated from infected turnip leaves. Cell 29:395–402
    [Google Scholar]
  40. Pfeiffer P., Hohn T. 1983; Involvement of reverse transcription in the replication of cauliflower mosaic virus: a detailed model and test of some aspects. Cell 33:781–789
    [Google Scholar]
  41. Pfeiffer P., Laquel P., Hohn T. 1984; Cauliflower mosaic virus replication complexes: characterization of the associated enzymes and of the polarity of the DNA synthesized in vitro . Plant Molecular Biology 3:261–270
    [Google Scholar]
  42. Prats A. C., Sarih L., Gabus C., Litvak S., Keith G., Darlix J. L. 1988; Small finger protein of avian and murine retroviruses has nucleic acid annealing activity and positions the replication primer tRNA onto genomic RNA. EMBO Journal 7:1777–1783
    [Google Scholar]
  43. Rigby P. W. J., Dieckmann M., Rhodes C., Berg P. 1977; Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. Journal of Molecular Biology 113:237–251
    [Google Scholar]
  44. Shepherd R. J. 1979; DNA plant viruses. Annual Review of Plant Physiology 30:405–423
    [Google Scholar]
  45. Southern E. M. 1975; Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology 98:503–517
    [Google Scholar]
  46. Summers J., Mason W. S. 1982; Replication of the genome of hepatitis B virus by reverse transcription of an RNA intermediate. Cell 29:403–415
    [Google Scholar]
  47. Takatsuji H., Hirochica H., Fukushi T., Ikeda J. 1986; Expression of cauliflower mosaic virus reverse transcriptase in yeast. Nature, London 319:240–243
    [Google Scholar]
  48. Taylor J. M. 1977; An analysis of the role of tRNA species as primers for the transcription into DNA of RNA tumor virus genomes. Biochimica et biophysica acta 473:57–71
    [Google Scholar]
  49. Thomas P. S. 1980; Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of the National Academy of SciencesU.S.A 77:5201–5205
    [Google Scholar]
  50. Thomas C. M., Hull R., Bryant J. A., Maule A. J. 1985; Isolation of a fraction from cauliflower mosaic virus-infected protoplasts which is active in the synthesis of ( + ) and ( – ) strand viral DNA and reverse transcription of primed RNA templates. Nucleic Acids Research 13:4557–4573
    [Google Scholar]
  51. Tiollais P., Pourcel C., Dejean A. 1985; The hepatitis B virus. Nature, London 317:489–195
    [Google Scholar]
  52. Turner D. S., Covey S. N. 1984; A putative primer for the replication of cauliflower mosaic virus by reverse transcription is virion-associated. FEBS Letters 165:285–289
    [Google Scholar]
  53. Volovitch M., Dumas J. P., Drugeon G., Yot P. 1977; Single-stranded interruptions in cauliflower mosaic virus DNA. In Nucleic Acids and Protein Synthesis in Plants635–641 Bogorad L., Weil J. H. Paris: Colloques du Centre National de la Recherche Scientifique;
    [Google Scholar]
  54. Volovitch M., Modjtahedi N., Yot P., Brun G. 1984; RNA-dependent DNA polymerase activity in cauliflower mosaic virus-infected plant leaves. EMBO Journal 3:309–314
    [Google Scholar]
  55. Wahl G. M., Stern M., Stark G. R. 1979; Efficient transfer of large DNA fragments from agarose gels to diazobenzyloxymethyl paper and rapid hybridization by using dextran sulfate. Proceedings of the National Academy of SciencesU.S.A 76:3683–3687
    [Google Scholar]
  56. Williams A. E., Vinograd J. 1971; The buoyant behaviour of RNA and DNA in cesium sulfate solutions containing dimethylsulfoxide. Biochimica et biophysica acta 228:423–439
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-12-3439
Loading
/content/journal/jgv/10.1099/0022-1317-70-12-3439
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error