1887

Abstract

SUMMARY

Vaccinia virus particles contain a protein kinase with an of 62K calculated from sedimentation rate. We have sequenced the I G restriction fragment of the vaccinia virus genome near to the right inverted terminal repeat and have identified two genes which share 36% amino acid identity with each other and are related to the family of protein kinase genes. One gene, designated B1R, encodes a 34·2K protein which shares 27% identity with a protein kinase encoded by the herpes simplex virus type 1 US3 gene and contains conserved motifs characteristic of protein kinases of serine/ threonine specificity. The second gene, B12R, encodes a protein of 33·3K which is poorly related to known protein kinases and lacks specific amino acids at several highly conserved key positions. The deduced partial amino acid sequence of a gene in the corresponding region of the cowpox virus genome is identical to B12R except for one conservative amino acid substitution. Both of the vaccinia virus genes are transcribed towards the right-hand end of the genome early during infection. It is possible that the product of either or both of these genes associates to form a homo- or heterodimer that represents the 62K virion-associated protein kinase.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-12-3187
1989-12-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/12/JV0700123187.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-12-3187&mimeType=html&fmt=ahah

References

  1. Arzoglou P., Drillien R., Kirn A. 1978; Evidence for an alkaline protease in vaccinia virus. Virology 95:211–214
    [Google Scholar]
  2. Baldick C. J., Moss B. 1987; Resistance of vaccinia virus to rifampicin conferred by a single nucleotide substitution near the predicted NH2 terminus of a gene encoding an M r 62000 polypeptide. Virology 156:138–145
    [Google Scholar]
  3. Bankier A. T., Weston K. M., Barrell B. G. 1987; Random cloning and sequencing by the M13/dideoxy-nucleotide chain termination method. Methods in Enzymology 155:51–93
    [Google Scholar]
  4. Barton G. J., Sternberg M. J. E. 1987; A strategy for the rapid multiple alignment of protein sequences. Journal of Molecular Biology 198:327–337
    [Google Scholar]
  5. Beckes J. D., Childers L. C., Perrault J. 1989; Phosphorylation of vesicular stomatitis M protein: evidence for a second virion-associated protein serine kinase activity. Virology 169:161–171
    [Google Scholar]
  6. Blasco R., Aguero M., De La Vega I., Viñuela E. 1988; Genetic variation of ASF virus arises by deletion of multigene families. Abstracts. VII International Poxvirus/Iridovirus Meeting, Heidelberg4
    [Google Scholar]
  7. Boursnell M. E. G., Foulds I. J., Campbell J. I., Binns M. M. 1988; Non-essential genes in the vaccinia virus HindIII K fragment: a gene related to serine protease inhibitors and a gene related to the 37K vaccinia virus major envelope antigen. Journal of General Virology 69:2995–3003
    [Google Scholar]
  8. Brenner S. 1987; Phosphotransferase sequence homology. Nature, London 329:21
    [Google Scholar]
  9. Broyles S. S., Moss B. 1986; Homology between RNA polymerases of poxviruses, prokaryotes and eukaryotes: nucleotide sequence and transcriptional analysis of vaccinia virus genes encoding 147 kDa and 22 kDa subunits. Proceedings of the National Academy of SciencesU.S.A 83:3141–3145
    [Google Scholar]
  10. Broyles S. S., Moss B. 1987; Identification of the vaccinia virus gene encoding nucleoside triphosphate phosphohydrolase I, a DNA-dependent ATPase. Journal of Virology 61:1738–1742
    [Google Scholar]
  11. Bryant D. L., Parsons J. T. 1984; Amino acid alterations within a highly conserved region of the Rous sarcoma virus src gene product pp60src inactivate tyrosine protein kinase activity. Molecular and Cellular Biology 4:862–866
    [Google Scholar]
  12. Chee M. S., Lawrence G. L., Barrell B. G. 1989; Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase. Journal of General Virology 70:1151–1160
    [Google Scholar]
  13. Chen W. S., Lazar C. S., Poenie M., Tsien R. Y., Gill G. N., Rosenfeld M. G. 1987; Requirement for intrinsic protein tyrosine kinase in the immediate and late actions of the EGF receptor. Nature, London 328:820–823
    [Google Scholar]
  14. Cooper G. 1982; Cellular transforming genes. Science 218:801–806
    [Google Scholar]
  15. Earl P. L., Jones E. V., Moss B. 1986; Homology between DNA polymerase of poxviruses, herpesviruses and adenoviruses: nucleotide sequence of the vaccinia virus DNA polymerase gene. Proceedings of the National Academy of SciencesU.S.A 83:3659–3663
    [Google Scholar]
  16. Edelman A. M., Takio K., Blumenthal D. K., Hansen R. S., Walsh K. A., Titani K., Krebs E. G. 1985; Characterization of the calmodulin-binding and catalytic domains in skeletal muscle myosin light chain kinase. Journal of Biological Chemistry 260:11275–11285
    [Google Scholar]
  17. Gorbalenya A. E., Koonin E. V., Donchenko A. P., Blinov V. M. 1988; A conserved NTP-motif in putative helicases. Nature, London 333:22
    [Google Scholar]
  18. Hanks S. K., Quinn A. M., Hunter T. 1988; The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52
    [Google Scholar]
  19. Hirt P., Hiller G., Wittek R. 1986; Localization and fine structure of a vaccinia virus gene encoding an envelope antigen. Journal of Virology 58:757–764
    [Google Scholar]
  20. Hodgman T. C. 1988; A new superfamily of replicative proteins. Nature, London 333:22–23
    [Google Scholar]
  21. Hruby D. E., Ball L. A. 1982; Mapping and identification of the vaccinia virus thymidine kinase gene. Journal of Virology 43:403–409
    [Google Scholar]
  22. Jones E. V., Moss B. 1984; Mapping of the vaccinia virus DNA polymerase gene by marker rescue and cell-free translation of selected RNA. Journal of Virology 49:72–77
    [Google Scholar]
  23. Jones E. V., Puckett C., Moss B. 1987; DNA-dependent RNA polymerase subunits encoded within the vaccinia virus genome. Journal of Virology 61:1765–1771
    [Google Scholar]
  24. Kao S.-Y., Bauer W. R. 1987; Biosynthesis and phosphorylation of vaccinia virus structural protein VP11. Virology 159:399–407
    [Google Scholar]
  25. Kleiman J. H., Moss B. 1973; Protein kinase activity from vaccinia virus: solubilization and separation into heat-labile and heat-stable components. Journal of Virology 2:684–689
    [Google Scholar]
  26. Kleiman J. H., Moss B. 1975a; Purification of a protein kinase and two phosphate acceptor proteins from vaccinia virions. Journal of Biological Chemistry 250:2420–2429
    [Google Scholar]
  27. Kleiman J. H., Moss B. 1975b; Characterization of a protein kinase and two phosphate acceptor proteins from vaccinia virions. Journal of Biological Chemistry 250:2430–2437
    [Google Scholar]
  28. Kotwal G. J., Moss B. 1988; Analysis of a cluster of non-essential genes deleted from a vaccinia virus terminal transposition mutant. Virology 167:524–537
    [Google Scholar]
  29. Kotwal G. J., Moss B. 1989; Vaccinia virus encodes two proteins that are structurally related to members of the plasma serine protease inhibitor superfamily. Journal of Virology 63:600–606
    [Google Scholar]
  30. Lakritz N., Fogelsong P. D., Reddy M., Baum S., Hurwitz J., Bauer W. R. 1985; A novel vaccinia virus DNase preparation which cross-links superhelical DNA. Journal of Virology 53:935–943
    [Google Scholar]
  31. Leader D. P., Katan M. 1988; Viral aspects of protein phosphorylation. Journal of General Virology 69:1441–1464
    [Google Scholar]
  32. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  33. Mcgeoch D. J., Davison A. J. 1986; Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Research 14:1765–1777
    [Google Scholar]
  34. Mcgeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  35. Maniatis T., Fritsch E. F., sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  36. Marth J. D., Peet R., Krebs E. G., Perlmutter R. M. 1985; A lymphocyte-specific protein tyrosine kinase is rearranged and overexpressed in murine T cell lymphoma LYSTRA. Cell 43:393–404
    [Google Scholar]
  37. Morgan J. R., Cohen L. K., Roberts B. E. 1984; Identification of the DNA sequences encoding the large subunit of the mRNA-capping enzyme of vaccinia virus. Journal of Virology 52:206–214
    [Google Scholar]
  38. Moss B. 1985; Replication of poxviruses 1985. In Virology685–703 Fields B. N. New York: Raven Press;
    [Google Scholar]
  39. Niles E. G., Condit R. C., Caro P., Davidson K., Matusick L., Seto J. 1986; Nucleotide sequence and genetic map of the 16 kb vaccinia virus HindIII D fragment. Virology 153:96–112
    [Google Scholar]
  40. Paoletti E., Moss B. 1972; Protein kinases and specific phosphate acceptor proteins associated with vaccinia virus cores. Journal of Virology 10:417–424
    [Google Scholar]
  41. Patel D. D., Pickup D. J. 1989; The second largest subunit of the poxvirus RNA polymerase is similar to the corresponding subunits of prokaryotic and eukaryotic RNA polymerases. Journal of Virology 63:1076–1086
    [Google Scholar]
  42. Patterson M., Sclafani R. A., Fangman W. L., Rosamond J. 1986; Molecular characterization of cell cycle gene CDC7 from Saccharomyces cerevisiae . Molecular and Cellular Biology 6:1590–1598
    [Google Scholar]
  43. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proceedings of the National Academy of SciencesU.S.A 85:2444–2448
    [Google Scholar]
  44. Pickup D. J., Ink B. S., Hu W., Ray C. A., Joklik W. K. 1986; Hemorrhage in lesions caused by cowpox virus is induced by a viral protein that is related to plasma protein inhibitors of serine proteases. Proceedings of the National Academy of SciencesU.S.A 83:7698–7702
    [Google Scholar]
  45. Plucienniczak A., Schroeder E., Zettlemeissel G., Streeck R. F. 1985; Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome. Nucleic Acids Research 13:985–998
    [Google Scholar]
  46. Polatnick J., Pan I. C., Gravell M. 1974; Protein kinase activity in ASFV. Archiv für die gesamte Virusforschung 44:156–159
    [Google Scholar]
  47. Purves F. C., Longnecker R. M., Leader D. P., Roizman B. 1987; Herpes simplex virus 1 protein kinase is encoded by open reading frame US3 which is not essential for virus growth in cell culture. Journal of Virology 61:2896–2901
    [Google Scholar]
  48. Reddy M. K., Bauer W. R. 1989; Activation of the vaccinia virus nicking-joining enzyme by trypsinization. Journal of Biological Chemistry 264:443–449
    [Google Scholar]
  49. Rodriguez J. F., Kahn J. S., Esteban M. 1986; Molecular cloning, encoding sequence, and expression of vaccinia virus nucleic-acid dependent nucleoside triphosphatase gene. Proceedings of the National Academy of SciencesU.S.A 83:9566–9570
    [Google Scholar]
  50. Rosel J. L., Earl P. L., Weir J. P., Moss B. 1986; Conserved TAAATG sequence at the transcriptional and translational start sites of vaccinia virus late genes deduced by structural and functional analysis of the HindIII H genome fragment. Journal of Virology 60:436–449
    [Google Scholar]
  51. Saxena A., Padmanabha R., Glover C. V. C. 1987; Isolation and sequencing of cDNA clones encoding alpha and beta subunits of Drosophila melanogaster casein kinase II. Molecular and Cellular Biology 7:3409–3417
    [Google Scholar]
  52. Schmitt J. F. C., Stunnenberg H. G. 1988; Sequence and transcriptional analysis of the vaccinia virus HindIII I fragment. Journal of Virology 62:1889–1897
    [Google Scholar]
  53. Schwartz D., Tizard R., Gilbert W. 1982; The complete nucleotide sequence of the Pr-C strain of Rous sarcoma virus. In RNA Tumor Viruses: Molecular Biology of Tumor Viruses, 2.1338–1348 Weiss R., Teich N., Varmus H., Coffin J. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  54. Selten G., Cuypers H. T., Boelens W., Robanus-Maandag E., Verbeek J., Domen J., Van Beveren C., Berns A. 1986; The primary structure of the putative oncogene pim-1 shows extensive homology with protein kinases. Cell 46:603–611
    [Google Scholar]
  55. Shida H. 1986; Nucleotide sequence of the vaccinia virus hemagglutinin gene. Virology 150:451–462
    [Google Scholar]
  56. Shuman S., Moss B. 1987; Identification of a vaccinia virus gene encoding a type I topoisomerase. Proceedings of the National Academy of SciencesU.S.A 84:7478–7482
    [Google Scholar]
  57. Silberstein H., August J. T. 1976; Purification and properties of a virion protein kinase. Journal of Biological Chemistry 251:3176–3184
    [Google Scholar]
  58. Slabaugh M., Roseman N., Davis R., Matthews C. 1988; Vaccinia virus-encoded ribonucleotide reductase: sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. Journal of Virology 62:519–527
    [Google Scholar]
  59. Smith G. L., Howard S. T., Chan Y. S. 1989; Vaccinia virus encodes a family of genes with homology to serine proteinase inhibitors. Journal of General Virology 70:2333–2343
    [Google Scholar]
  60. Smith R. F., Smith T. F. 1989; Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein-Barr virus. Journal of Virology 63:450–455
    [Google Scholar]
  61. Staden R. 1980; A new computer method for the storage and manipulation of DNA gel reading data. Nucleic Acids Research 8:3673–3694
    [Google Scholar]
  62. Staden R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  63. Staden R. 1986; The current status and portability of our sequencing handling software. Nucleic Acids Research 14:217–231
    [Google Scholar]
  64. Stevely W. S., Katan M., Stirling V., Smith G., Leader D. P. 1985; Protein kinase activities associated with the virions of pseudorabies and herpes simplex virus. Journal of General Virology 66:661–673
    [Google Scholar]
  65. Takio K., Blumenthal D. K., Walsh K. A., Tltani K., Krebs E. G. 1986; Amino acid sequence of rabbit skeletal muscle myosin light chain kinase. Biochemistry 25:8049–8057
    [Google Scholar]
  66. Tengelsen L. A., Slabaugh M. B., Bibler J. M., Hruby D. E. 1988; Nucleotide sequence and molecular genetic analysis of the large subunit of ribonucleotide reductase encoded by vaccinia virus. Virology 164:121–131
    [Google Scholar]
  67. Tomley F., Binns M., Campbell J., Boursnell M. 1988; Sequence analysis of an 11·2 kilobase, near-terminal BamHI fragment of fowlpox virus. Journal of General Virology 69:1025–1040
    [Google Scholar]
  68. Traktman P., Sridhar P., Condit R. C., Roberts B. E. 1983; Transcriptional mapping of the DNA polymerase gene of vaccinia virus. Journal of Virology 49:125–131
    [Google Scholar]
  69. Upton C., Delange A. M., Mcfadden G. 1987; Tumorigenic poxviruses: genomic organization and DNA sequence of the telomeric region of the Shope fibroma virus genome. Virology 160:20–30
    [Google Scholar]
  70. Venkatesan S., Gershowitz A., Moss B. 1982; Complete nucleotide sequence of two adjacent early vaccinia virus genes located within the inverted terminal repetition. Journal of Virology 44:637–646
    [Google Scholar]
  71. Weinrich S. L., Hruby D. E. 1986; A tandemly-orientated late gene cluster within the vaccinia virus genome. Nucleic Acids Research 14:3003–3016
    [Google Scholar]
  72. Weir J. P., Moss B. 1983; Nucleotide sequence of the vaccinia virus thymidine kinase gene and the nature of spontaneous frameshift mutations. Journal of Virology 46:530–537
    [Google Scholar]
  73. Weir J. P., Bajszar G., Moss B. 1982; Mapping of the vaccinia virus thymidine kinase gene by marker rescue and by cell-free translation of selected mRNA. Proceedings of the National Academy of SciencesU.S.A 79:1210–1214
    [Google Scholar]
  74. Weston K., Barrell B. G. 1986; Sequence of the short unique region, short repeats, and part of the long repeats of human cytomegalovirus. Journal of Molecular Biology 192:177–208
    [Google Scholar]
  75. Wierenga R. K., Hol W. G. J. 1983; Predicted nucleotide-binding properties of p21 and its cancer-associated variant. Nature, London 302:842–844
    [Google Scholar]
  76. Yuen L., Moss B. 1987; Oligonucleotide sequence signalling transcriptional termination of vaccinia virus early genes. Proceedings of the National Academy of SciencesU.S.A 84:6417–6421
    [Google Scholar]
/content/journal/jgv/10.1099/0022-1317-70-12-3187
Loading
/content/journal/jgv/10.1099/0022-1317-70-12-3187
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error