1887

Abstract

Summary

The intact terminal protein genes (TP1 and TP2) of Epstein–Barr virus (EBV) are created upon infection by circularization of the linear viral genome at its terminal repeats. The structure of the 1·7 kb TP2 latent mRNA has been determined by cDNA analysis and Northern blotting, revealing its close relation to TP1 mRNA. The 1·7 kb transcript is expressed from a different promoter and has a different 5′ exon from TP1 but is also spliced across the terminal repeats. The last eight exons are common to the TP1 and TP2 RNAs. The TP2 promoter is 3·3 kb downstream of the TP1 promoter and is part of a bidirectional latent EBV promoter region transcribing the TP2 and the latent membrane protein RNAs in opposite directions.

Keyword(s): EBV , latent cycle and transcription
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-11-3079
1989-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/11/JV0700113079.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-11-3079&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature London: 310207–211
    [Google Scholar]
  2. Berk A. J., Sharp P. A. 1978; Spliced early RNAs of SV40. Proceedings of the National Academy of SciencesU.S.A. 751274–1278
    [Google Scholar]
  3. Bodescot M., Brison O., Perricaudet M. 1986; An Epstein-Barr virus transcription unit is at least 84 kilobases long. Nucleic Acids Research 14:2611–2620
    [Google Scholar]
  4. Cann A. J., Koyanagi Y., Chen I. S. Y. 1988; High efficiency transfection of primary human lymphocytes and studies of gene expression. Oncogene 3:123–128
    [Google Scholar]
  5. Corden J., Wasylyk B., Buchwalder A., Sassone-Corsi P., Kedinger C., Chambon P. 1980; Promoter sequences of eukaryotic protein-coding genes. Science 209:1406–1414
    [Google Scholar]
  6. Epstein M. A., Achong B. G. 1986; The Epstein-Barr Virus: Recent Advances. London: Heinemann;
    [Google Scholar]
  7. Farrell P. J. 1989; The Epstein-Barr virus genome. In Advances in Viral Oncology 8103–132 Klein G. New York: Raven Press;
    [Google Scholar]
  8. Farrell P. J., Bankier A., Séguin C., Deininger P., Barrell B. G. 1983; Latent and lytic cycle promoters of the Epstein-Barr virus. EMBO Journal 2:1331–1338
    [Google Scholar]
  9. Gorman C. M., Moffat L. F., Howard B. H. 1982; Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Molecular and Cellular Biology 2:1044–1051
    [Google Scholar]
  10. Henle W., Diehl V., Kohn G., Zur Hausen H., Henle G. 1967; Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science 157:1064–1065
    [Google Scholar]
  11. Hudson G. S., Bankier A. T., Satchweix S. C., Barrell B. G. 1985; The short unique region of the B95-8 Epstein-Barr virus genome. Virology 147:81–98
    [Google Scholar]
  12. Hurley E. A., Thorley-Lawson D. A. 1988; B cell activation and the establishment of Epstein-Barr virus latency. Journal of Experimental Medicine 168:2059–2077
    [Google Scholar]
  13. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  14. Laux G., Perricaudet M., Farrell P. J. 1988; A spliced Epstein-Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO Journal 7:769–775
    [Google Scholar]
  15. Lindahl T., Adams A., Bjursell G., Bornkamm G., Kaschka-Dierich C., Jehn U. 1976; Covalently closed circular duplex DN A of Epstein-Barr virus in a human lymphoid cell line. Journal of Molecular Biology 102:511–530
    [Google Scholar]
  16. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  17. Matsuo T., Heller M., Petti L., O’shiro E., kieff E. 1984; Persistence of the entire Epstein-Barr virus genome integrated into human lymphocyte DNA. Science 226:1322–1325
    [Google Scholar]
  18. Messing J., Vieira J. 1982; A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19:269–276
    [Google Scholar]
  19. Mount S. 1982; A catalogue of splice junction sequences. Nucleic Acids Research 10:459–472
    [Google Scholar]
  20. Rooney C., Taylor N., Countryman J., Jenson H., Kolman J., Miller G. 1988; Genome rearrangements activate the Epstein-Barr virus gene whose product disrupts latency. Proceedings of the National Academy of SciencesU.S.A. 859801–9806
    [Google Scholar]
  21. Sample J., Liebowitz D., Kieff E. 1989; Two related Epstein-Barr virus membrane proteins are encoded by separate genes. Journal of Virology 63:933–937
    [Google Scholar]
  22. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of SciencesU.S.A. 745463–5467
    [Google Scholar]
  23. Sugden B., Phelps M., Domoradzki J. 1979; Epstein-Barr virus DNA is amplified in transformed lymphocytes. Journal of Virology 31:590–595
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-11-3079
Loading
/content/journal/jgv/10.1099/0022-1317-70-11-3079
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error