A Comparative Analysis of the Sequence of the Thymidine Kinase Gene of a Gammaherpesvirus, Herpesvirus Saimiri Free

Abstract

Summary

We present the nucleotide sequence of a region from the genome of the A + T-rich gammaherpesvirus, herpesvirus saimiri (HVS), which includes the coding sequences for the viral thymidine kinase (TK) gene. The organization of genes in this region resembles the homologous region of the Epstein-Barr virus (EBV) genome and is very compact, using overlapping coding sequences and with nucleotides shared by initiation and termination codons of neighbouring reading frames. The HVS TK is predicted to contain a 527 residue polypeptide with the first part of the presumptive nucleotide-binding site [(L, I, V)(F, Y)(I, L)(D, E)(G)(X)(X)(G)(L, I, V, M)(G)(K)(T, S)(T, S)] located at residues 212 to 224. This motif is close to the amino terminus of the TK polypeptides of alphaherpesviruses and the polypeptides of the cellular and poxvirus-encoded enzymes. The corresponding reading frame of the human gammaherpesvirus (EBV) also has a long amino-terminal extension but significant amino acid sequence similarities between the HVS and EBV sequences are not observed until the region of the nucleotide-binding site. Comparisons of these homologous carboxy-terminal sequences of the HVS- and EBV-encoded proteins with those from six alphaherpes viruses and proteins encoded by Marek's disease virus (MDV) and the herpesvirus of turkeys (HVT) confirm that the HVS and EBV sequences are products of a distinct lineage. The sequences of the MDV and HVT encoded enzymes are significantly more similar to sequences of alphaherpesvirus enzymes than to those of HVS and EBV. Comparison of these 10 highly divergent TK sequences extends and refines the identification of essential features of this family of herpesvirus enzymes and defines 19 positions at which all sequences have identical residues.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-11-3003
1989-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/11/JV0700113003.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-11-3003&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Séguin C., Tuffnell P. S., Barrell B.G. 1984; DNA sequence and expression of the B958 Epstein-Barr virus genome. Nature London 310:207–211
    [Google Scholar]
  2. Bankier A. T., Barrell B. G. 1983; Shotgun DNA sequencing. In Techniques in the Life Sciences B51–33 Flavell. R. A. Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  3. Biggin M. D., Gibson T., Hong C. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of SciencesU.S.A. 80:3963–3965
    [Google Scholar]
  4. Boyle D. B., Coupar B. E. H., Gibbs A. J., Seigman L. J., Both G. W. 1987; Fowlpox virus thymidine kinase: nucleotide sequence and relationships to other thymidine kinases. Virology 156:355–365
    [Google Scholar]
  5. Cameron K. R., Stamminger T., Craxton M., Bodemer W., Honesss R. W., Fleckenstein B. 1987; The 160,000-Mr virion protein encoded at the right end of the herpesvirus saimiri genome is homologous to the 140,000-Mr membrane antigen encoded at the left end of the Epstein-Barr virus genome. Journal of Virology 61:2063–2070
    [Google Scholar]
  6. Chen M. S., & Prusoff W. H. 1978; Association of thymidylate kinase activity with pyrimidine deoxy-ribonucleoside kinase induced by herpes simplex virus. Journal of Biological Chemistry 253:1325–1327
    [Google Scholar]
  7. Chen M. S., Summers W. P., Walker J., Summers W. C., Prusoff W. H. 1979; Characterization of pyrimidine deoxyribonucleoside kinase (thymidine kinase) and thymidylate kinase as a multifunctional enzyme in cells transformed by herpes simplex virus type 1 and in cells infected with mutant strains of herpes simplex virus. Journal of Virology 30:942–945
    [Google Scholar]
  8. Chen M. S., Amico L. A., Speelman D. J. 1984; Kinetics of interaction of monophosphates of the antiviral nucleosides 2′-fluoro-1-D-arabinofuranosylpyrimidine and (E)-5-(2-bromovinyl)-2′-deoxyuridme with thymidylate kinases from Vero cells and herpes simplex virus types 1 and 2. Antimicrobial Agents and Chemotherapy 26:778–780
    [Google Scholar]
  9. Darby G., Field H. J., Salisbury S. A. 1981; Altered substrate specificity of herpes simplex virus thymidine kinase confers acyclovir-resistance. Nature London: 28981–83
    [Google Scholar]
  10. Darby G., Larder B. A., Inglis M. M. 1986; Evidence that the ‘active centre’ of the herpes simplex virus thymidine kinase involves an interaction between three distinct regions of the polypeptide. Journal of General Virology 67:753–758
    [Google Scholar]
  11. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  12. Davison A. J., Taylor P. 1987; Genetic relations between varicella-zoster virus and Epstein-Barr virus. Journal of General Virology 68:1067–1079
    [Google Scholar]
  13. Elion G. B., Furman P. A., Fyfe J. A., Miranda P. D., Beauchamp L., Schaeffer H. J. 1977; Selectivity of action of an antiherpetic agent 9-(2-hydroxyethoxymethyl) guanine. Proceedings of the National Academy of SciencessU.S.A. 745716–5720
    [Google Scholar]
  14. Fyfe J. A. 1981; Differential phosphorylation of (E)-5(2-bromovinyl)-2′-deoxyuridine monophosphate by thymidine kinases from herpes simplex viruses type 1 and 2 and varicella-zoster virus. Molecular Pharmacology 21:432–437
    [Google Scholar]
  15. Gentry G. A., Lowe M., Alford G., Nevins R. 1988; Sequence analysis of herpesviral enzymes suggest an ancient origin for human sexual behavior. Proceedings of the National Academy of SciencesU.S.A. 852658–2661
    [Google Scholar]
  16. Gompels U. A., Craxton M. A., Honess R. W. 1988a; Conservation of gene organization in the lymphotropic herpesviruses: herpesvirus saimiri and Epstein-Barr virus. Journal of Virology 62:757–767
    [Google Scholar]
  17. Gompels U. A., Craxton M. A., Honess R. W. 1988b; Conservation of glycoprotein H (gH) in herpesviruses: nucleotide sequence of the gH gene from herpesvirus saimiri. Journal of General Virology 69:2819–2829
    [Google Scholar]
  18. Gorbalenya A. E., Blinov V. M., Donchenko A. P., Koogin E. V. 1989; An NTP-binding motif is the most conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand RNA viral replication. Journal of Molecular Evolution 28:256–268
    [Google Scholar]
  19. Haarr L., Flatmark T. 1987; Evidence that deletion of coding sequence at the 5′ end of the thymidine kinase gene of herpes simplex virus type 1 affects the stability of the gene products. Journal of General Virology 68:2817–2829
    [Google Scholar]
  20. Haarr L., Marsden H. S., Preston C. M., Smiley J. R., Summers W. C., Summers W. P. 1985; Utilization of internal AUG codons for initiation of protein synthesis directed by mRNAs from normal and mutant genes encoding herpes simplex virus thymidine kinase. Journal of Virology 56:512–519
    [Google Scholar]
  21. Halpern M. E., Smiley J. R. 1984; Effects of deletions on expression of the herpes simplex thymidine kinase gene from the intact viral genome: The amino terminus of the enzyme is dispensable for catalytic activity. Journal of Virology 50:733–738
    [Google Scholar]
  22. Honess R. W. 1984; Herpes simplex and ‘the herpes complex’: diverse observations and a unifying hypothesis. Journal of General Virology 65:2077–2107
    [Google Scholar]
  23. Honess R. W., O’Hare P., Young D. 1982; Comparison of thymidine kinase activities induced in cells productively infected with herpesvirus saimiri and herpes simplex virus. Journal of General Virology 58:237–249
    [Google Scholar]
  24. Honess R. W., Gompels U. A., Barrell B. G., Craxton M., Cameron K. R., Staden R., Chang Y. N., Hayward G. S. 1989; Deviations from expected frequencies of CpG dinucleotides in herpesvirus DNAs may be diagnostic of differences in the states of their latent genomes. Journal of General Virology 70:837–855
    [Google Scholar]
  25. Jacobson J. G., Martin S. L., Coen D. M. 1989; A conserved open reading frame that overlaps the herpes simplex virus thymidine release gene is important for viral growth in cell culture. Journal of Virology 63:1839–1843
    [Google Scholar]
  26. Kit S. 1985; Thymidine kinase. Microbiological Sciences 2:369–375
    [Google Scholar]
  27. Kit S., Kit M., Qavi H., Trkula D., Otsuka H. 1983; Nucleotide sequence of the herpes simplex virus type 2 (HSV-2) thymidine kinase gene and predicted amino acid sequence of thymidine kinase polypeptide and its comparison with the HSV-1 thymidine kinase gene. Biochimica et biophysica acta 741:158–170
    [Google Scholar]
  28. Kit S., Ichimura H., De Clercq E. 1987; Phosphorylation of nucleoside analogs by equine herpesvirus type 1 pyrimidine deoxynucleoside kinase. Antiviral Research 7:53–67
    [Google Scholar]
  29. Knust E., Schirm S., Dietrich W., Bodemer W., Kolb E., Fleckenstein B. 1983; Cloning of herpesvirus saimiri DNA fragments representing the entire L-region of the genome. Gene 25:287–289
    [Google Scholar]
  30. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  31. Littler E., Zeuthen J., Mcbride A. A., Trost-Sorensen E., Powell K. L., Walsh-Arrand I. E., Arrand J. R. 1986; Identification of an Epstein-Barr virus-encoded thymidine kinase. EMBO Journal 5:1959–1966
    [Google Scholar]
  32. Liu Q., Summers W. C. 1988; Site-directed mutagenesis of a nucleotide-binding domain in HSV-1 thymidine kinase: effects on catalytic activity. Virology 163:638–642
    [Google Scholar]
  33. Machida H. 1986; Comparison of susceptibilities of varicella-zoster virus and herpes simplex viruses to nucleoside analogs. Antimicrobial Agents and Chemotherapy 29:524–526
    [Google Scholar]
  34. Mcgeoch D. I., Dalrymple M. A., Dolan A., Mcnab D., Perry L. J., Taylor P., Challberg M. D. 1988; Structures of herpes simplex virus type 1 genes required for replication of virus DNA. Journal of Virology 62:901–918
    [Google Scholar]
  35. Mittall S. K., Field H. J. 1989; Analysis of the bovine herpesvirus type 1 thymidine kinase (TK) gene from wild-type virus and TK-deficient mutants. Journal of General Virology 70:901–918
    [Google Scholar]
  36. Nicholas J., Gompels U. A., Craxton M. A., Honess R. W. 1988; Conservation of sequence and function between the product of the 52-kilodalton immediate-early gene of herpesvirus saimiri and the BMLF1- encoded transcriptional effector (EB2) of Epstein-Barr virus. Journal of Virology 62:3250–3257
    [Google Scholar]
  37. Otsuka H., kit S. 1984; Nucleotide sequence of the marmoset herpesvirus thymidine kinase gene and predicted amino acid sequence of thymidine kinase polypeptide. Virology 135:316–330
    [Google Scholar]
  38. Robertson G. R., Whalley J. M. 1988; Evolution of the herpes thymidine kinase: identification and comparison of the equine herpesvirus 1 thymidine kinase gene reveals similarity to a cell-encoded thymidylate kinase. Nucleic Acids Research 16:11303–11317
    [Google Scholar]
  39. Scott S. D., Ross N. L. J., Binns M. M. 1989; Nucleotide and predicted amino acid sequences of the Marek’s disease virus and turkey herpesvirus thymidine kinase genes and comparison with thymidine kinase genes of other herpesviruses. Journal of General Virology 70:3055–3065
    [Google Scholar]
  40. Staden R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  41. Staden R. 1984; Measurements of the effects that coding for a protein has on DNA sequence and their use for finding genes. Nucleic Acids Research 12:551–561
    [Google Scholar]
  42. Staden R. 1986; The current status and portability of our sequence handling software. Nucleic Acids Research 14:217–231
    [Google Scholar]
  43. Stamminger T., Honess R. W., Young D. F., Bodemer W., Blair E. D., Fleckenstein B. 1987; Organization of terminal reiterations in the virion DNA of herpesvirus saimiri. Journal of General Virology 68:1049–1066
    [Google Scholar]
  44. Swain M. A., Galloway D. A. 1983; Nucleotide sequence of the herpes simplex virus type 2 thymidine kinase gene. Journal of Virology 46:1045–1050
    [Google Scholar]
  45. Taylor W. R. 1988; A flexible method to align large numbers of biological sequences. Journal of Molecular Evolution 28:161–169
    [Google Scholar]
  46. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO Journal 1:945–951
    [Google Scholar]
  47. Wu C. A., Nelson N. J., Mcgeoch D. J., Challberg M. D. 1988; Identification of herpes simplex virus type 1 genes required for origin-dependent DNA synthesis. Journal of Virology 62:435–43
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-11-3003
Loading
/content/journal/jgv/10.1099/0022-1317-70-11-3003
Loading

Data & Media loading...

Most cited Most Cited RSS feed