1887

Abstract

Summary

We have determined the complete nucleotide sequence of coxsackievirus A21(CAV-21), the first member of this enterovirus subgroup to be analysed in molecular detail. The sequence, which is 7401 nucleotides long, encodes an open reading frame of 2206 codons, preceded by a 5′ non-coding region of 711 nucleotides and followed by a 3′ non-coding region of 72 nucleotides plus a poly(A) tract. The most striking feature is the remarkable homology to the poliovirus (> 90% at the amino acid level) in the 3′ part of the genome. The rest of the genome is much less homologous, suggesting that CAV-21 is a recombinant virus. Rhinovirus-like characteristics, including the length of the 5′ non-coding region and a slight --U/--A imbalance in codon usage, may be related to the fact that CAV-21, like rhinoviruses, infects the upper respiratory tract. However, the sequence sheds little light on the molecular basis of the shared receptor specificity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-11-2943
1989-11-01
2021-10-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/11/JV0700112943.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-11-2943&mimeType=html&fmt=ahah

References

  1. Abraham G., Colonno R. J. 1984; Many rhinovirus serotypes share the same cellular receptor. Journal of Virology 51:340–345
    [Google Scholar]
  2. Arnold E., Luo M., Vribnd G., Rossmann M. G., Palmenberg A. C., Parks G. D., Nicklin M. J. H., Wimmer E. 1987; Implications of the picornavirus capsid structure for polyprotein processing. Proceedings of the National Academy of SciencesU.S.A 8421–25
    [Google Scholar]
  3. Bienkowska-Szewcyzk K., Ehrenfeld E. 1988; An internal 5′ noncoding region required for translation of poliovirus RNA in vitro. Journal of Virology 62:3068–3072
    [Google Scholar]
  4. Cann A. J., Stanway G., Hauptmann R., Minor P. D., Schild G. C., Clarke L. D., Mountford R. C., Almond J. W. 1983; Poliovirus type 3: molecular cloning of the genome and nucleotide sequence of the region encoding the protease and polymerase proteins. Nucleic Acids Research 11:1267–1281
    [Google Scholar]
  5. Carroll A. R., Rowlands D. J., Clarke B. E. 1984; The complete nucleotide sequence of the RNA coding for the primary translation products of foot-and-mouth disease virus. Nucleic Acids Research 12:2461–2472
    [Google Scholar]
  6. Colonno R. J., Condra J. H., Mizutani S., Callahan P. L., Davies M-E, Murcko M. A. 1988; Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proceedings of the National Academy of SciencesU.S.A 855449–5453
    [Google Scholar]
  7. Dale R. M. K., Mcclure B. A., Houchins J. P. 1985; A rapid single stranded cloning strategy for producing a sequential series of overlapping clones for use in DNA sequencing: application to sequencing the corn mitochondrial 18S rDNA. Plasmid 13:31–40
    [Google Scholar]
  8. Deininger P. 1983; Random subcloning of sonicated DNA: application to shotgun DNA sequence analysis. Analytical Biochemistry 129:216–223
    [Google Scholar]
  9. Duechler M., Skern T., Sommergruber W., Neubauer C, Gruendler P., Fogy I., Blaas D., Kuechler E. 1987; Evolutionary relationships within the human rhinovirus genus: comparison of serotypes 89, 2 and 14. Proceedings of the National Academy of SciencesU.S.A 842605–2609
    [Google Scholar]
  10. Earle J.A.P., Skuce R.A., Fleming C.S., Hoey E.M., Martin S. 1988; The complete nucleotide sequence of abovineentero virus. Journal of General Virology 69:253–263
    [Google Scholar]
  11. Gama R.E., Hughes P.J., Bruce C.B., Stanway G. 1988; Polymerase chain reaction amplification of rhinovirus nucleicacids from clinical material. Nucleic Acids Research 16:9346
    [Google Scholar]
  12. Greve J.M., Davis G., Meyer A.M., Forte C.P., Yost S.C., Marlor C.W., Kamarck M.E., Mcclelland A. 1989; The major human rhinovirus receptor is ICAM-1. Cell 56:839–847
    [Google Scholar]
  13. Grist N.R., Bell E.J., Assaad F. 1978; Entero viruses in human disease. Progress in Medical Virology 24:114–157
    [Google Scholar]
  14. Hughes P.J., Evans D.M.A., Minor P.D., Schild G.C., Almond J.W., Stanway G. 1986; The nucleotide sequence of a type 3 poliovirus isolated during a recent outbreak of poliomyelitis in Finland. Journal of General Virology 67:2093–2102
    [Google Scholar]
  15. Hughes P.J., Phillips A., Minor P.D., Stanway G. 1987; The sequence of the coxsackievirus A21 polymerase gene indicates a remarkably close relationship to the polioviruses.. Archives of Virology 94:141–147
    [Google Scholar]
  16. Hughes P.J., North C., Jellis C.H., Minor P.D., Stanway G. 1988; The nucleotide sequence of human rhinovirus 1B: molecular relationships within the rhinovirus genus. Journal of General Virology 69:49–58
    [Google Scholar]
  17. Iizuka N., Kuge S., Nomoto A. 1987; Complete nucleotide sequence of the genome of the coxsackievirus B1. Virology 156:64–73
    [Google Scholar]
  18. Inoue T., Suzuki T., Sekiguchi K. 1989; The complete nucleotide sequence of swine vesicular disease virus. Journal of General Virology 70:919–934
    [Google Scholar]
  19. Jenkins O., Booth J.D., Minor P.D., Almond I.W. 1987; The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the Picornaviridae. Journal of General Virology 68:1835–1848
    [Google Scholar]
  20. Kew O.M., Nottay B.K. 1985; Evolution of the oral polio vaccine strains in humans occurs by both mutation and intermolecular recombination. In Modern Approaches to Vaccines: Molecular and Chemical Basis of Virus Virulence and Immunogenicity357–362 Chanock R.M., Lerner R.A. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Kozak M. 1989; The scanning model for translation: an update. Journal of Cell Biology 108:229–241
    [Google Scholar]
  22. Kuge S., Nomoto A. 1987; Construction of viable deletion and insertion mutants of the Sabin strain of type 1 poliovirus: function of the 5′ noncoding sequence in viral replication. Journal of Virology 61:1478–1487
    [Google Scholar]
  23. Lindberg A.M., Stälhandske P.O.K., Pettersson U. 1987; Genome of coxsackievirus B3. Virology 156:50–63
    [Google Scholar]
  24. Lonberg-Holm K., Crowell R.L., Philipson L. 1976; Unrelated animal viruses share receptors. Nature London: 259679–681
    [Google Scholar]
  25. Minor P.D., Ferguson M., Evans D.M.A., Almond J.W. 1986; Antigenic structure of polioviruses of serotypes 1, 2 and 3. Journal of General Virology 67:1283–1291
    [Google Scholar]
  26. Najarian R., Caput D., Gee W., Potter S., Renard A., Merryweather J., Van Nest G., Dina D. 1985; Primary structure and gene organization of human hepatitis A virus. Proceedings of the National Academy of SciencesU.S.A 82:2627–2631
    [Google Scholar]
  27. Palmenberg A.C., Kirby E.M., Tanda M.R., Drake N.L., Duke G.M., Potratz K.F., Collett M.S. 1984; The nucleotide and deduced amino acid sequence of the encephalomyocarditis viral polyprotein coding region. Nucleic Acids Research 12:2969–2985
    [Google Scholar]
  28. Pelletier J., Sonenberg N. 1988; Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature London: 334320–325
    [Google Scholar]
  29. Pevear D.C., Calen off M., Rozhon E., Lipton H. 1987; Analysis of the complete nucleotide sequence of the picornavirus Theiler’s murine encephalomyelitis virus indicates that it is closely related to cardioviruses. Journal of Virology 61:1507–1516
    [Google Scholar]
  30. Rossmann M.G., Arnold E., Erickson T.W., Frankenberger E.A., Griffith T.P., Hecht H.T., Johnson T., Kamer G., Luo M., Mosser A.G., Rueckert R.R., Sherry B., Vriend G. 1985; Structure of a human common cold virus and functional relationship to other picornaviruses. Nature London: 317:145–153
    [Google Scholar]
  31. Rueckert R.R. 1985; Picornaviruses and their replication. In Virology705–738 Fields B.N. New York: Raven Press;
    [Google Scholar]
  32. Saiki R.K., Gefland D.H., Staffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. 1988; Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491
    [Google Scholar]
  33. Sanger F., Nicklen S., Coulson A.R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of SciencesU.S.A 74:5463–5467
    [Google Scholar]
  34. Skern T., Sommergruber W., Blass D., Gruendler P., Fraundorfer F., Pieler C., Fogy I., Kuechler E. 1985; Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein region. Nucleic Acids Research 13:2111–2126
    [Google Scholar]
  35. Staden R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  36. Stanway G., Hughes P.J., Mountford R.C., Minor P.D., Almond J.W. 1984a; The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Research 12:7859–7875
    [Google Scholar]
  37. Stanway G., Mountford R.C., Cox S.D.J., Schild G.C., Minor P.D., Almond J.W. 1984b; Molecular cloning of the genomes of poliovirus type 3 strains by the cDNA:RNA hybrid method. Archives of Virology 81:67–78
    [Google Scholar]
  38. Staunton D.E., Merluzzi V.J., Rothlein R., Barton R., Martin S.D., Springer T.A. 1989; A cell adhesion molecule, ICAM-1,is the major surface receptor for rhinoviruses. Cell 56:849–853
    [Google Scholar]
  39. Toyoda H., Khara M., Kataoka Y., Suganuma T., Omata T., Imura N., Nomoto A. 1984; Complete nucleotide sequences of all three poliovirus serotype genomes:implication for genetic relationship, gene function and antigenic determinants. Journal of Molecular Biology 174:561–585
    [Google Scholar]
  40. Toyoda H., Nicklin M.J.M., Murray M.T., Anderson C.W., Dunn J.J., Studier F.W., Wimmer E. 1986; A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45:761–770
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-11-2943
Loading
/content/journal/jgv/10.1099/0022-1317-70-11-2943
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error