1887

Abstract

SUMMARY

The ability of poly(-lysine)-conjugated and methylphosphonate-modified synthetic human immunodeficiency virus type 1 (HIV-1) antisense oligodeoxyribonucleotides to protect susceptible host cells from the cytopathic effects of HIV-1 infection was studied. The abundance of viral antigens in oligomer-treated cultures indicated that the oligomers did not significantly affect viral infectivity. Similarly, no significant effects on relative viral RNA accumulation were apparent. The presence of poly(-lysine)-modified oligomer complementary to the HIV-1 splice donor site resulted in a significant reduction in the production of viral structural proteins and virus titre in infected cultures. In addition, these cells were protected from HIV-1-mediated cytopathic effects while the other cultures rapidly succumbed to the cytotoxic effects of HIV-1 infection. The presence of poly(-lysine)-conjugated oligomer resulted in the establishment of a persistent HIV-1 infection characterized by a highly productive virus infection in the absence of cell death while treatment of persistently infected cells with phorbol ester resulted in renewed cytopathicity. These results demonstrate the ability of synthetic antisense oligonucleotides to protect susceptible host cells from the cytopathic effects of HIV-1 infection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-10-2673
1989-10-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/10/JV0700102673.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-10-2673&mimeType=html&fmt=ahah

References

  1. Agris C. H., Blake K. R., Miller P. S., Reddy M. P., Ts’o P. O. P. 1986; Inhibition of vesicular stomatitis virus protein synthesis and infection by sequence-specific oligodeoxyribonucleoside methylphosphonates. Biochemistry 25:6268–6275
    [Google Scholar]
  2. Barré-Sinoussi F., Cherman J. C., Rey R., Nugeyere M. T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Brun-Vexinet F., Rouzioux C., Rozenbaum W., Montagnier L. 1983; Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immunodeficiency syndrome (AIDS). Science 220:868–871
    [Google Scholar]
  3. Casareale D., Dewhurst S., Sonnabend J., Sinangil F., Purtilo D., Volsky D. J. 1985; Prevalence of AIDS-associated retrovirus and anti-bodies among male homosexuals at risk for AIDS in Greenwich Village. AIDS Research 1:407–421
    [Google Scholar]
  4. Casareale D., Stevenson M., Sakai K., Volsky D. 1987; A human T-cell line resistant to cytopathic effects of the human immunodeficiency virus (HIV-1). Virology 156:40–49
    [Google Scholar]
  5. Chirgwin J. M., Pryzbyla A. E., Mcdonald R., Rutter W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299
    [Google Scholar]
  6. Coleman J., Hirashima A., Inokuchi Y., Green P. J., Inouye M. 1985; A novel immune system against bacteriophage infection using complementary RNA (mic RNA). Nature London: 315601–603
    [Google Scholar]
  7. Dalgleish A. G., Beverley P. C. L., Clapham P. R., Crawford D. R., Greaves M. F., Weiss R. A. 1984; The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature London: 312763–767
    [Google Scholar]
  8. Gunning P., Ponte P., Okayama H., Engel J., Blau H., Keddes L. 1983; Isolation and characterization of full-length cDNA clones for human α, β, and γ-actin mRNAs: skeletal but not cytoplasmic actins have an aminoterminal cysteine that is subsequently removed. Molecular and Cellular Biology 3:787–795
    [Google Scholar]
  9. Hall J. L., Dudley L., Dobner P., Lewis S. A., Cowan N. J. 1983; Identification of two human β-tubulin isotypes. Molecular and Cellular Biology 3:854–862
    [Google Scholar]
  10. Harada S., Koyonagi Y., Yamamoto N. 1985; Infection of HTLV-III/LAV in HTLV-I-carrying cells MT-2 and MT-4 and application in a plaque assay. Science 229:563–566
    [Google Scholar]
  11. Harada S., Koyanagi Y., Nakashima H., Kobayashi N., Yamamoto N. 1986; Tumor promoter, TPA, enhances replication of HTLV-III/LAV. Virology 154:249–258
    [Google Scholar]
  12. Hoxie I. A., Alpers J. D., Rackowski J. L., Huebner K., Haggarty B. S., Cedarbaum A. J., Reed J. D. 1986; Alterations in T4 (CD4) protein and mRNA synthesis in cells infected with HIV-1. Science 234:1123–1127
    [Google Scholar]
  13. Izant J. G., Weintraub H. 1984; Inhibition of thymidine kinase gene expression by antisense RNA: a molecular approach to genetic analysis. Cell 36:1007–1015
    [Google Scholar]
  14. Izant J. G., Weintraub H. 1985; Constitutive and conditional suppression of exogenous and endogenous genes by antisense RNA. Science 229:345–352
    [Google Scholar]
  15. Kaufman J. D., Valandra G., Roderiquez G., Bushar G., Giri C., Norcross A. 1987; Phorbol ester enhances human immunodeficiency virus-promoted gene expression and acts on a repeated 10-base pair functional enhancer element. Molecular and Cellular Biology 7:3759–3766
    [Google Scholar]
  16. Kim S. K., Wold B. J. 1985; Stable reduction of thymidine kinase activity in cells expressing high levels of anti-sense RNA. Cell 42:129–138
    [Google Scholar]
  17. Lemaitre M., Bayard B., Lebleu B. 1987; Specific antiviral activity of a poly(l-lysine)-conjugated oligo-deoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site. Proceedings of the National Academy of SciencesU.S.A 84648–652
    [Google Scholar]
  18. Levy J. A., Hoffman A. D., Kramer S. M., Landis J. A., Shimabukuro J. M., Oskiro L. S. 1984; Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 225:840–842
    [Google Scholar]
  19. Lifson J. D., Feinberg M. B., Reyes G. R., Rabin L., Banapour B., Chakrabarti S., Moss B., Wong-STAAL F., Steimer K. S., Engleman E. G. 1986; Induction of CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein. Nature London: 323725–728
    [Google Scholar]
  20. Lifson J. D., Reyes G. R., Mcgrath M. S., Stein B. J., Engleman E. G. 1986b; AIDS retrovirus induced cytopathology: giant cell formation and involvement of the CD4 antigen. Science 232:1123–1127
    [Google Scholar]
  21. Lindell T. J., Weinberg F., Morris P. W., Roeder R. G., Rutter W. J. 1970; Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science 170:447–449
    [Google Scholar]
  22. Maddon P. J., Dalgleish A. G., Mcdougal I. S., Clapham P. R., Weiss R. A., Axel R. 1986; The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348
    [Google Scholar]
  23. Miyoshi I., Taguchi H., Kubonishi I., Yoshimoto S., Ohrauki Y., Shiraishi Y., Akagi T. 1982; Type-C virus producing cell lines derived from adult T-cell leukemia. Japanese Journal of Cancer Research 28:219–228
    [Google Scholar]
  24. Murakami A., Blake K. R., Miller P. S. 1985; Characterization of sequence-specific oligodeoxyribonucleotide methylphosphonates and their interaction with rabbit globin mRNA. Biochemistry 24:4041–4046
    [Google Scholar]
  25. Pellegrino M. G., Lewin M., Meyer W. A., Lanciotti R. S., Bhaduri-HAUCK L., Volsky D. I., Sakai K., Folks T. M., Gillespie D. 1987; A sensitive solution hybridization technique for detecting RNA in cells: application to HIV-1 in blood cells. Biotechniques 5:452–159
    [Google Scholar]
  26. Rhode S. L., Paradiso P. R. 1983; Parvovirus genome: nucleotide sequence of HI and mapping of its genes by hybrid arrested translation. Journal of Virology 45:173–184
    [Google Scholar]
  27. Schott M. E. 1985; A simple manual method for oligonucleotide synthesis. American Synthesis Biotechnology Laboratory Jan/Feb
    [Google Scholar]
  28. Smith C. C., Aurelian L., Reddy M. P., Miller P. S., Ts’o P. O. P. 1986; Antiviral effect of an oligo(nucleoside methylphosphonate) complementary to the splice junction of herpes simplex virus type I immediate early pre-mRNAs 4 and 5. Proceedings of the National Academy of SciencesU.S.A 832787–2791
    [Google Scholar]
  29. Stevenson M., Meier C., Mann A. M., Chapman N., Wasiak A. 1988; Envelope glycoprotein of HIV-1 induces interference and cytolysis resistance in CD4+ cells: mechanism for persistence in AIDS. Cell 53:483–496
    [Google Scholar]
  30. Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. 1985; Nucleotide sequence of the AIDS virus, LAV. Cell 40:9–17
    [Google Scholar]
  31. Zagury D., Bernard J., Leonard R., Cheynier R., Feldman M., Sarin P. S., Gallo R. C. 1986; Long-term cultures of HTLV-III-infected T-cells: a model of cytopathology of T-cell depletion in AIDS. Science 231:850–853
    [Google Scholar]
  32. Zamecnik P. C., Goodchild J., Taguchi Y., Sarin P. S. 1986; Inhibition of replication and expression of human T-cell lymphotropic virus type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA. Proceedings of the National Academy of SciencesU.S.A 834143–4146
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-10-2673
Loading
/content/journal/jgv/10.1099/0022-1317-70-10-2673
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error