Tandem Repeated Sequences within the Terminal Region of the Fowlpox Virus Genome Free

Abstract

SUMMARY

A 6·2 kb HI terminal fragment from fowlpox virus has been cloned and the nucleotide sequence was determined. The fragment was cloned by S1 digestion of viral DNA and therefore does not contain the covalently closed terminal loop. The cloned sequences comprise a short (230 bp) unique region at the terminal end, which is adjacent to a 3·87 bp long, AT-rich region consisting of sets of short tandemly repeated units, 32 and 56 bp long. The remainder of the fragment is composed of a 2·18 kb unique region containing three major open reading frames. The amino acid sequence encoded by one of these has some similarity to that of platelet-derived growth factor.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-1-145
1989-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/1/JV0700010145.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-1-145&mimeType=html&fmt=ahah

References

  1. Archard L. C., Mackett M. 1979; Restriction endonuclease analysis of red cowpox virus and its white pock variant. Journal of General Virology 45:51–63
    [Google Scholar]
  2. Baroudy B. M., Venkatesan S., Moss B. 1982; Incompletely base-paired flip-flop terminal loops link the two strands of the vaccinia virus genome into one uninterrupted polynucleotide chain. Cell 28:315–324
    [Google Scholar]
  3. Bersholtz C., Johnsson A., Heldin C., Westermark B., Lind P., Urdea M. S., Eddy R., Shows T. B., Philpott K., Mellor A. L., Knott J., Scott J. 1986; cDNA sequence and chromosomal localization of human platelet-derived growth factor A-chain and its expression in tumour cell lines. Nature London: 320:695–699
    [Google Scholar]
  4. Biggin M. D., Gibson T. J., Hong G. F. 1983; Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proceedings of the National Academy of SciencesU.S.A. 80:3963–3965
    [Google Scholar]
  5. Binns M. M., Stenzler L., Tomley F. M., Campbell I., Boursnell M. E.G. 1987; Identification by a random sequencing strategy of the fowlpoxvirus DNA polymerase gene, its nucleotide sequence and comparisons with other DNA polymerases. Nucleic Acids Research 15:6563–6573
    [Google Scholar]
  6. Binns M. M., Tomley F. M, Campbell J., Boursnell M. E. G. 1988; Comparison of a conserved region in fowlpox virus and vaccinia virus genomes and the translocation of the fowlpox virus thymidine kinase gene. Journal of General Virology 69:1275–1283
    [Google Scholar]
  7. Boyle D. B., Coupar B. E. H. 1988; Construction of recombinant fowlpox viruses as vectors for poultry vaccines. Virus Research 10:343–356
    [Google Scholar]
  8. Brierley L., Boursnell M. E. G., Binns M. M., Bilimoria B., Blok V., Brown T. D. K., Inglis S. C. 1987; An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO Journal 6:3779–3785
    [Google Scholar]
  9. Brown J. P., Twardzik D. R., Marquardt H., Todaro G. J. 1985; Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor. Nature, London 313:491–492
    [Google Scholar]
  10. Buller R. M. L., Chakrabarti S., Cooper J., Twardzik D., Moss B. 1988; Deletion of the vaccinia virus growth factor gene reduces virus virulence. Journal of Virology 62:866–874
    [Google Scholar]
  11. Chang W. C., Upton C., Hu S., Purchio A. F., Mcfen G. 1986; The genome of Shope fibroma, a tumorigenic poxvirus, contains a growth factor gene with sequence similarity to those encoding epidermal growth factor and transforming growth factor alpha. Molecular and Cellular Biology 7:535–540
    [Google Scholar]
  12. Cheevers W. P., Randall C. C. 1968; Viral and cellular growth and sequential increase of protein and DNA during fowlpox infection in vivo. Proceedings of the Society for Experimental Biology and Medicine 127:401–405
    [Google Scholar]
  13. Delange A. M., Reddy M., Scraba D., Upton C., Mcfadden G. 1986; Replication and resolution of cloned poxvirus telomeres in vivo generates linear minichromosomes with intact viral hairpin termini. Journal of Virology 59:249–259
    [Google Scholar]
  14. Drillien R., Spehner D., Villeval D., Lecocq J.-P. 1987; Similar genetic organization between a region of fowlpox virus DNA and the vaccinia virus Hindlll J fragment despite divergent location of the thymidine kinase gene. Virology 160:203–209
    [Google Scholar]
  15. George D. G., Barker W. C., Hunt L. T. 1986; The protein identification resource (PIR). Nucleic Acids Research 14:11–15
    [Google Scholar]
  16. Holmes D. S., Quigley M. 1981; A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry 114:193–197
    [Google Scholar]
  17. Jacks J., Varmus H. E. 1985; Expression of the Rous sarcoma viruspol gene by ribosomal frameshifting. Science 230:1237–1242
    [Google Scholar]
  18. Lipman D. J., Pearson W. R. 1985; Rapid and sensitive protein similarity searches. Science 227:1435–1441
    [Google Scholar]
  19. Mackett M., Archard L. C. 1979; Conservation and variation in Orthopoxvirus genome structure. Journal of General Virology 45:683–701
    [Google Scholar]
  20. Mackett M., Smith G. L. 1986; Vaccinia virus expression vectors. Journal of General Virology 67:2067–2082
    [Google Scholar]
  21. Maniatis T., Fritsch E. F., Sambrook I. 1982; Molecular Cloning: A Laboratory Manual. New York; Cold Spring Harbor Laboratory:
    [Google Scholar]
  22. Moss B., Winters E., Cooper N. 1981; Instability and reiteration of DNA sequences within the vaccinia virus genome. Proceedings of the National Academy of SciencesU.S.A. 78:614–618
    [Google Scholar]
  23. Parsons B. L., Pickup D. J. 1987; Tandemly repeated sequences are present at the ends of the DNA of racoonpox virus. Virology 161:45–53
    [Google Scholar]
  24. Pickup D. J., Bastia D., Joklik W. K. 1983; Cloning of the terminal loop of vaccinia virus DNA. Virology 124:215–217
    [Google Scholar]
  25. Plucienniczak A., Schroeder E., Zettlemeissl G., Streek R. E. 1985; Nucleotide sequence of a cluster of early and late genes in a conserved segment of the vaccinia virus genome. Nucleic Acids Research 13:985–998
    [Google Scholar]
  26. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of SciencesU.S.A. 74:5463–5467
    [Google Scholar]
  27. Smith H. O., Birnstiel M. L. 1976; A simple method for DNA restriction site mapping. Nucleic Acids Research 3:2387–2398
    [Google Scholar]
  28. Spratt B. G., Hedge P. J., Heesen S., Edelman A., Broome-SMITH J. K. 1986; Kanamycin-resistant vectors that are analogues of plasmids pUC8, pUC9, pEMBL8 and pEMBL9. Gene 41:337–342
    [Google Scholar]
  29. Staden R. 1982; Automation of the computer handling of gel reading data produced by the shotgun method of DNA sequencing. Nucleic Acids Research 10:4731–4751
    [Google Scholar]
  30. Staden R. 1984; Graphic methods to determine the function of nucleic acid sequences. Nucleic Acids Research 12:521–538
    [Google Scholar]
  31. Tomley F., Binns M., Campbell J., Boursnell M. 1988; Sequence analysis of an 11-2 kilobase, near-terminal, BamHl fragment of fowlpox virus. Journal of General Virology 69:1025–1040
    [Google Scholar]
  32. Upton C., Macen J. L., Mcfadden G. 1987; Mapping and sequencing of a gene from myxoma virus that is related to those encoding epidermal growth factor and transforming growth factor alpha. Journal of Virology 61:1271–1275
    [Google Scholar]
  33. Waterfield M. D., Scrace G. T., Whittle N., Stroobant P., Johnsson A., Wasteson A., Westermark B., Heldin C. H., Huang J. S., Deuel T. F. 1983; Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature London: 30435–39
    [Google Scholar]
  34. Wittek R., Menna A., Muller H. K., Schumperli D., Boseley P. G., Wyler R. 1978a; Inverted terminal repeats in rabbitpox virus and vaccinia virus DNA. Journal of Virology 23:669–678
    [Google Scholar]
  35. Wittek R., Muller H. K., Menna A., Wyler R. 1978b; Length heterogeneity in the DNA of vaccinia virus is eliminated on cloning the virus. FEBS letters 90:41–46
    [Google Scholar]
  36. Wittek R., Barbosa E., Cooper J. A., Garon C. F., Chan H., Moss B. 1980; Inverted terminal repetition in vaccinia virus DNA encodes early mRNAs. Nature, London 285:21–25
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-1-145
Loading
/content/journal/jgv/10.1099/0022-1317-70-1-145
Loading

Data & Media loading...

Most cited Most Cited RSS feed