1887

Abstract

SUMMARY

A temperature-sensitive () mutant, tsG1, has been isolated from the CVS (Challenge Virus Standard) strain of rabies virus. The mutation affects the glycoprotein (G protein); it consists of an amino acid substitution (leucine to phenylalanine) at position 132. tsG1 exhibits a slightly reduced pathogenicity when administered via the intracerebral route and complete avirulence after intramuscular inoculation, associated with a very high protective power for adult mice. The mutation does not seem to block the transport of the G protein to the plasma membrane at the non-permissive temperature (39.6 °C). It abolishes the c.p.e. of the virus in cell cultures.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-1-133
1989-01-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/1/JV0700010133.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-1-133&mimeType=html&fmt=ahah

References

  1. Anilionis A., Wunner W. H., Curtis P. I. 1981; Structure of the glycoprotein gene of rabies virus. Nature, London 294275–278
    [Google Scholar]
  2. Arias C., Bell J. R., Lenches E. M., Strauss E. G., Strauss J. H. 1983; Sequence analysis of two mutants of Sindbis virus defective in the intracellular transport of their glycoproteins. Journal of Molecular Biology 168:87–102
    [Google Scholar]
  3. Arnheiter H., Dubois-Dalcq M., Lazzarini R. A. 1984; Direct visualization of protein transport and processing in the living cell by microinjection of specific antibodies. Cell 39:99–109
    [Google Scholar]
  4. Aubert M. F. A., Bussereau F., Blancou J. 1980; Pathogenic, immunogenic and protective powers of ten temperature-sensitive mutants of rabies virus in mice. Annales de Virologie 131:217–228
    [Google Scholar]
  5. Bergmann J. E., Tokuvasu K. T., Singer S. J. 1981; Passage of an integral membrane protein, the vesicular stomatitis virus glycoprotein, through the Golgi apparatus en route to the plasma membrane. Proceedings of the National Academy of SciencesU.S.A. 78:1746–1750
    [Google Scholar]
  6. Bonner W. M., Laskey R. A. 1974; A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. European Journal of Biochemistry 46:83–88
    [Google Scholar]
  7. Bussereau F., Flamand A., Pese-Part D. 1982a; Reproducible plaquing system for rabies virus in CER cells. Journal of Virological Methods 4:277–282
    [Google Scholar]
  8. Bussereau F., Benejean J., Saghi N. 1982b; Isolation and study of temperature-sensitive mutants of rabies virus. Journal of General Virology 60:153–158
    [Google Scholar]
  9. Bussereau F., Aubert M., Blancou J. 1983; Temperature-sensitive mutants of rabies virus: behaviour following inoculation into mouse and fox. Annales de Virologie 134:315–325
    [Google Scholar]
  10. Coslett G. D., Holloway B. P., Obijeski J. F. 1980; The structural proteins of rabies virus and evidence for their synthesis from separate monocistronic RNA species. Journal of General Virology 49:161–180
    [Google Scholar]
  11. Coulon P., Rollin P., Aubert M., Flamand A. 1982; Molecular basis of rabies virus virulence. I. Selection of avirulent mutants of the CVS strain with anti-G monoclonal antibodies. Journal of General Virology 61:97–100
    [Google Scholar]
  12. Coulon P., Rollin P. E., Flamand A. 1983; Molecular basis of rabies virus virulence. II. Identification of a site on the CVS glycoprotein asssociated with virulence. Journal of General Virology 64:693–696
    [Google Scholar]
  13. Diallo A. 1984; Analyse des protéines des mutants du virus rabique. Thèse de 3ème cycle, Université Paris VII
    [Google Scholar]
  14. Dietzschold B., Wunner W. H., Wiktor T. J., Lopez A. D., Lafon M., Smith C. L., Koprowski H. 1983; Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proceedings of the National Academy of SciencesU.S.A. 80:70–74
    [Google Scholar]
  15. Flamand A., Delagneau J. F. 1978; Transcriptional mapping of rabies virus in vivo. Journal of Virology 28:518–523
    [Google Scholar]
  16. Flamand A., Delagneau J. F., Bussereau F. 1978; An RNA polymerase activity in purified rabies virions. Journal of General Virology 40:233–238
    [Google Scholar]
  17. Gallione C. J., Rose J. K. 1985; A single amino-acid substitution in a hydrophobic domain causes temperature-sensitive cell surface transport of a mutant viral glycoprotein. Journal of Virology 54:374–382
    [Google Scholar]
  18. Holloway B. P., Obijeski J. F. 1980; Rabies virus-induced RNA synthesis in BHK21 cells. Journal of General Virology 49:181–195
    [Google Scholar]
  19. Karber G. 1931; Beitrag zur Kollektiven Behandlung pharmakologischer Reihenversuche. Archiv für experimented Pathologie und Pharmakologie 162:480–483
    [Google Scholar]
  20. Kawai A. 1977; Transcriptase activity associated with rabies virion. Journal of Virology 24:826–835
    [Google Scholar]
  21. Kurilla M. G., Cabradilla C. D., Holloway B. P., Keene J. D. 1984; Nucleotide sequence and host La protein interactions of rabies virus leader RNA. Journal of Virology 50:773–778
    [Google Scholar]
  22. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227680–685
    [Google Scholar]
  23. Lafay F., Bénéjean J. 1981; Temperature-sensitive mutants of vesicular stomatitis virus: tryptic peptide maps of the protein modified in complementation groups II and IV. Virology 111:93–102
    [Google Scholar]
  24. Lafon M., Wiktor T. J., Macfarlan R. I. 1983; Antigenic sites on the CVS rabies virus glycoprotein: analysis with monoclonal antibodies. Journal of General Virology 64:843–851
    [Google Scholar]
  25. Naito S., Matsumoto S. 1978; Identification of cellular actin within rabies virus. Virology 91:151–163
    [Google Scholar]
  26. Nakajima S., Brown D. J., Ueda M., Nakajima K., Sugiura A., Pattnaik A. K., Nayak D. P. 1986; Identification of the defects in the hemagglutinin gene of two temperature-sensitive mutants of A/WSN/33 influenza virus. Virology 154:279–285
    [Google Scholar]
  27. Preéhaud C., Coulon P., Lafay F., Thiers C., Flamand A. 1988; Antigenic site II of the rabies virus glycoprotein: structure and role in viral virulence. Journal of Virology 62:1–7
    [Google Scholar]
  28. Pringle C. R. 1987; Rhabdovirus genetics. In The Rhabdoviruses167–232 Wagner R. R. New York & London: Plenum Press;
    [Google Scholar]
  29. Rose J. K., Schubert M. 1987; Rhabdovirus genomes and their products. In The Rhabdoviruses129–159 Wagner R. R. New York & London: Plenum Press;
    [Google Scholar]
  30. Saghi N., Flamand A. 1979; Biochemical characterization of temperature-sensitive rabies virus mutants. Journal of Virology 31:220–230
    [Google Scholar]
  31. Saghi N., Lafay F., Flamand A. 1981; Temperature-sensitive rabies mutants with an altered M1 protein. In The Replication of Negative Strand Viruses917–920 Bishop D. H. L., Compans R. W. Amsterdam: Elsevier/North-Holland;
    [Google Scholar]
  32. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of SciencesU.S.A 74:5463–5467
    [Google Scholar]
  33. Schuy W., Will C., Kuroda K., Scholtissek C., Garten W., Klenk H. D. 1986; Mutation blocking the transport of the influenza virus hemagglutinin between the rough endoplasmic reticulum and the Golgi apparatus. EMBO Journals2831–2836
    [Google Scholar]
  34. Seif I., Coulon P., Rollin P. E., Flamand A. 1985; Rabies virulence: effect on pathogenicity and sequence characterization of rabies virus mutations affecting antigenic site III of the glycoprotein. Journal of Virology 53:926–934
    [Google Scholar]
  35. Tidke R., Préhaud C., Coulon P., Blancou J., Flamand A. 1987; Characterization of a double avirulent mutant of rabies virus and its potency as a vaccine, live or inactivated. Vaccine 5:229–233
    [Google Scholar]
  36. Tordo N., Poch O., Ermine A., Keith G., Rougeon F. 1986; Walking along the rabies genome: is the large G–L intergenic region a remnant gene?. Proceedings of the National Academy of SciencesU.S.A. 83:3914–3918
    [Google Scholar]
  37. Tuffereau C., Flamand A. 1983; Characterization of rabies virus production by five persistently infected BHK-21 cell lines. Annales de Virologie 134:505–522
    [Google Scholar]
  38. Yelverton E., Norton S., Obijeski J. F., Goeddel D. V. 1983; Rabies virus glycoprotein analogs: biosynthesis in Escherichia coli. Science 219:614–620
    [Google Scholar]
  39. Zilberstein A., Snider M., Porter M., Lodish H. 1980; Mutants of vesicular stomatitis virus blocked at different stages in maturation of the viral glycoprotein. Cell 21:417–427
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-1-133
Loading
/content/journal/jgv/10.1099/0022-1317-70-1-133
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error